Initial Commit
commit
8c0c0b9d78
|
@ -0,0 +1,103 @@
|
|||
import numpy as np
|
||||
import pandas as pd
|
||||
from sklearn.metrics import confusion_matrix
|
||||
from sklearn.cross_validation import train_test_split
|
||||
from sklearn.tree import DecisionTreeClassifier
|
||||
from sklearn.metrics import accuracy_score
|
||||
from sklearn.metrics import classification_report
|
||||
|
||||
# Function importing Dataset
|
||||
def importdata():
|
||||
balance_data = pd.read_excel('Train.xlsx', sheet_name="Sheet1").to_numpy()
|
||||
|
||||
# Printing the dataswet shape
|
||||
print ("Dataset Length: ", len(balance_data))
|
||||
print ("Dataset Shape: ", balance_data.shape)
|
||||
|
||||
# Printing the dataset obseravtions
|
||||
print ("Dataset: ",balance_data.head())
|
||||
return balance_data
|
||||
|
||||
# Function to split the dataset
|
||||
def splitdataset(balance_data):
|
||||
|
||||
# Separating the target variable
|
||||
X = balance_data.values[:, 1:5]
|
||||
Y = balance_data.values[:, 0]
|
||||
|
||||
# Splitting the dataset into train and test
|
||||
X_train, X_test, y_train, y_test = train_test_split(
|
||||
X, Y, test_size = 0.3, random_state = 100)
|
||||
|
||||
return X, Y, X_train, X_test, y_train, y_test
|
||||
|
||||
# Function to perform training with giniIndex.
|
||||
def train_using_gini(X_train, X_test, y_train):
|
||||
|
||||
# Creating the classifier object
|
||||
clf_gini = DecisionTreeClassifier(criterion = "gini",
|
||||
random_state = 100,max_depth=3, min_samples_leaf=5)
|
||||
|
||||
# Performing training
|
||||
clf_gini.fit(X_train, y_train)
|
||||
return clf_gini
|
||||
|
||||
# Function to perform training with entropy.
|
||||
def tarin_using_entropy(X_train, X_test, y_train):
|
||||
|
||||
# Decision tree with entropy
|
||||
clf_entropy = DecisionTreeClassifier(
|
||||
criterion = "entropy", random_state = 100,
|
||||
max_depth = 3, min_samples_leaf = 5)
|
||||
|
||||
# Performing training
|
||||
clf_entropy.fit(X_train, y_train)
|
||||
return clf_entropy
|
||||
|
||||
|
||||
# Function to make predictions
|
||||
def prediction(X_test, clf_object):
|
||||
|
||||
# Predicton on test with giniIndex
|
||||
y_pred = clf_object.predict(X_test)
|
||||
print("Predicted values:")
|
||||
print(y_pred)
|
||||
return y_pred
|
||||
|
||||
# Function to calculate accuracy
|
||||
def cal_accuracy(y_test, y_pred):
|
||||
|
||||
print("Confusion Matrix: ",
|
||||
confusion_matrix(y_test, y_pred))
|
||||
|
||||
print ("Accuracy : ",
|
||||
accuracy_score(y_test,y_pred)*100)
|
||||
|
||||
print("Report : ",
|
||||
classification_report(y_test, y_pred))
|
||||
|
||||
# Driver code
|
||||
def main():
|
||||
|
||||
# Building Phase
|
||||
data = importdata()
|
||||
X, Y, X_train, X_test, y_train, y_test = splitdataset(data)
|
||||
clf_gini = train_using_gini(X_train, X_test, y_train)
|
||||
clf_entropy = tarin_using_entropy(X_train, X_test, y_train)
|
||||
|
||||
# Operational Phase
|
||||
print("Results Using Gini Index:")
|
||||
|
||||
# Prediction using gini
|
||||
y_pred_gini = prediction(X_test, clf_gini)
|
||||
cal_accuracy(y_test, y_pred_gini)
|
||||
|
||||
print("Results Using Entropy:")
|
||||
# Prediction using entropy
|
||||
y_pred_entropy = prediction(X_test, clf_entropy)
|
||||
cal_accuracy(y_test, y_pred_entropy)
|
||||
|
||||
|
||||
# Calling main function
|
||||
if __name__=="__main__":
|
||||
main()
|
|
@ -0,0 +1,103 @@
|
|||
import numpy as np
|
||||
import pandas as pd
|
||||
from sklearn.metrics import confusion_matrix
|
||||
from sklearn.model_selection import train_test_split
|
||||
from sklearn.tree import DecisionTreeClassifier
|
||||
from sklearn.metrics import accuracy_score
|
||||
from sklearn.metrics import classification_report
|
||||
|
||||
# Function importing Dataset
|
||||
def importdata():
|
||||
balance_data = pd.read_excel('Train.xlsx', sheet_name="Sheet1").to_numpy()
|
||||
|
||||
# Printing the dataswet shape
|
||||
print ("Dataset Length: ", len(balance_data))
|
||||
print ("Dataset Shape: ", balance_data.shape)
|
||||
|
||||
# Printing the dataset obseravtions
|
||||
print ("Dataset: ",balance_data.head())
|
||||
return balance_data
|
||||
|
||||
# Function to split the dataset
|
||||
def splitdataset(balance_data):
|
||||
|
||||
# Separating the target variable
|
||||
X = balance_data.values[:, 1:5]
|
||||
Y = balance_data.values[:, 0]
|
||||
|
||||
# Splitting the dataset into train and test
|
||||
X_train, X_test, y_train, y_test = train_test_split(
|
||||
X, Y, test_size = 0.3, random_state = 100)
|
||||
|
||||
return X, Y, X_train, X_test, y_train, y_test
|
||||
|
||||
# Function to perform training with giniIndex.
|
||||
def train_using_gini(X_train, X_test, y_train):
|
||||
|
||||
# Creating the classifier object
|
||||
clf_gini = DecisionTreeClassifier(criterion = "gini",
|
||||
random_state = 100,max_depth=3, min_samples_leaf=5)
|
||||
|
||||
# Performing training
|
||||
clf_gini.fit(X_train, y_train)
|
||||
return clf_gini
|
||||
|
||||
# Function to perform training with entropy.
|
||||
def tarin_using_entropy(X_train, X_test, y_train):
|
||||
|
||||
# Decision tree with entropy
|
||||
clf_entropy = DecisionTreeClassifier(
|
||||
criterion = "entropy", random_state = 100,
|
||||
max_depth = 3, min_samples_leaf = 5)
|
||||
|
||||
# Performing training
|
||||
clf_entropy.fit(X_train, y_train)
|
||||
return clf_entropy
|
||||
|
||||
|
||||
# Function to make predictions
|
||||
def prediction(X_test, clf_object):
|
||||
|
||||
# Predicton on test with giniIndex
|
||||
y_pred = clf_object.predict(X_test)
|
||||
print("Predicted values:")
|
||||
print(y_pred)
|
||||
return y_pred
|
||||
|
||||
# Function to calculate accuracy
|
||||
def cal_accuracy(y_test, y_pred):
|
||||
|
||||
print("Confusion Matrix: ",
|
||||
confusion_matrix(y_test, y_pred))
|
||||
|
||||
print ("Accuracy : ",
|
||||
accuracy_score(y_test,y_pred)*100)
|
||||
|
||||
print("Report : ",
|
||||
classification_report(y_test, y_pred))
|
||||
|
||||
# Driver code
|
||||
def main():
|
||||
|
||||
# Building Phase
|
||||
data = importdata()
|
||||
X, Y, X_train, X_test, y_train, y_test = splitdataset(data)
|
||||
clf_gini = train_using_gini(X_train, X_test, y_train)
|
||||
clf_entropy = tarin_using_entropy(X_train, X_test, y_train)
|
||||
|
||||
# Operational Phase
|
||||
print("Results Using Gini Index:")
|
||||
|
||||
# Prediction using gini
|
||||
y_pred_gini = prediction(X_test, clf_gini)
|
||||
cal_accuracy(y_test, y_pred_gini)
|
||||
|
||||
print("Results Using Entropy:")
|
||||
# Prediction using entropy
|
||||
y_pred_entropy = prediction(X_test, clf_entropy)
|
||||
cal_accuracy(y_test, y_pred_entropy)
|
||||
|
||||
|
||||
# Calling main function
|
||||
if __name__=="__main__":
|
||||
main()
|
|
@ -0,0 +1,96 @@
|
|||
import numpy as np
|
||||
import pandas as pd
|
||||
from sklearn.metrics import confusion_matrix
|
||||
from sklearn.model_selection import train_test_split
|
||||
from sklearn.tree import DecisionTreeClassifier
|
||||
from sklearn.metrics import accuracy_score
|
||||
from sklearn.metrics import classification_report
|
||||
|
||||
# Function importing Dataset
|
||||
def importdata():
|
||||
balance_data = pd.read_excel('Train.xlsx', sheet_name="Sheet1").to_numpy()
|
||||
return balance_data
|
||||
|
||||
# Function to split the dataset
|
||||
def splitdataset(balance_data):
|
||||
|
||||
# Separating the target variable
|
||||
X = balance_data.values[:, 1:5]
|
||||
Y = balance_data.values[:, 0]
|
||||
|
||||
# Splitting the dataset into train and test
|
||||
X_train, X_test, y_train, y_test = train_test_split(
|
||||
X, Y, test_size = 0.3, random_state = 100)
|
||||
|
||||
return X, Y, X_train, X_test, y_train, y_test
|
||||
|
||||
# Function to perform training with giniIndex.
|
||||
def train_using_gini(X_train, X_test, y_train):
|
||||
|
||||
# Creating the classifier object
|
||||
clf_gini = DecisionTreeClassifier(criterion = "gini",
|
||||
random_state = 100,max_depth=3, min_samples_leaf=5)
|
||||
|
||||
# Performing training
|
||||
clf_gini.fit(X_train, y_train)
|
||||
return clf_gini
|
||||
|
||||
# Function to perform training with entropy.
|
||||
def tarin_using_entropy(X_train, X_test, y_train):
|
||||
|
||||
# Decision tree with entropy
|
||||
clf_entropy = DecisionTreeClassifier(
|
||||
criterion = "entropy", random_state = 100,
|
||||
max_depth = 3, min_samples_leaf = 5)
|
||||
|
||||
# Performing training
|
||||
clf_entropy.fit(X_train, y_train)
|
||||
return clf_entropy
|
||||
|
||||
|
||||
# Function to make predictions
|
||||
def prediction(X_test, clf_object):
|
||||
|
||||
# Predicton on test with giniIndex
|
||||
y_pred = clf_object.predict(X_test)
|
||||
print("Predicted values:")
|
||||
print(y_pred)
|
||||
return y_pred
|
||||
|
||||
# Function to calculate accuracy
|
||||
def cal_accuracy(y_test, y_pred):
|
||||
|
||||
print("Confusion Matrix: ",
|
||||
confusion_matrix(y_test, y_pred))
|
||||
|
||||
print ("Accuracy : ",
|
||||
accuracy_score(y_test,y_pred)*100)
|
||||
|
||||
print("Report : ",
|
||||
classification_report(y_test, y_pred))
|
||||
|
||||
# Driver code
|
||||
def main():
|
||||
|
||||
# Building Phase
|
||||
data = importdata()
|
||||
X, Y, X_train, X_test, y_train, y_test = splitdataset(data)
|
||||
clf_gini = train_using_gini(X_train, X_test, y_train)
|
||||
clf_entropy = tarin_using_entropy(X_train, X_test, y_train)
|
||||
|
||||
# Operational Phase
|
||||
print("Results Using Gini Index:")
|
||||
|
||||
# Prediction using gini
|
||||
y_pred_gini = prediction(X_test, clf_gini)
|
||||
cal_accuracy(y_test, y_pred_gini)
|
||||
|
||||
print("Results Using Entropy:")
|
||||
# Prediction using entropy
|
||||
y_pred_entropy = prediction(X_test, clf_entropy)
|
||||
cal_accuracy(y_test, y_pred_entropy)
|
||||
|
||||
|
||||
# Calling main function
|
||||
if __name__=="__main__":
|
||||
main()
|
|
@ -0,0 +1,96 @@
|
|||
import numpy as np
|
||||
import pandas as pd
|
||||
from sklearn.metrics import confusion_matrix
|
||||
from sklearn.model_selection import train_test_split
|
||||
from sklearn.tree import DecisionTreeClassifier
|
||||
from sklearn.metrics import accuracy_score
|
||||
from sklearn.metrics import classification_report
|
||||
|
||||
# Function importing Dataset
|
||||
def importdata():
|
||||
dataset = pd.read_excel('Train.xlsx', sheet_name="Sheet1").to_numpy()
|
||||
return dataset
|
||||
|
||||
# Function to split the dataset
|
||||
def splitdataset(dataset):
|
||||
|
||||
# Separating the target variable
|
||||
X = dataset.values[:, 1:5]
|
||||
Y = dataset.values[:, 0]
|
||||
|
||||
# Splitting the dataset into train and test
|
||||
X_train, X_test, y_train, y_test = train_test_split(
|
||||
X, Y, test_size = 0.3, random_state = 100)
|
||||
|
||||
return X, Y, X_train, X_test, y_train, y_test
|
||||
|
||||
# Function to perform training with giniIndex.
|
||||
def train_using_gini(X_train, X_test, y_train):
|
||||
|
||||
# Creating the classifier object
|
||||
clf_gini = DecisionTreeClassifier(criterion = "gini",
|
||||
random_state = 100,max_depth=3, min_samples_leaf=5)
|
||||
|
||||
# Performing training
|
||||
clf_gini.fit(X_train, y_train)
|
||||
return clf_gini
|
||||
|
||||
# Function to perform training with entropy.
|
||||
def tarin_using_entropy(X_train, X_test, y_train):
|
||||
|
||||
# Decision tree with entropy
|
||||
clf_entropy = DecisionTreeClassifier(
|
||||
criterion = "entropy", random_state = 100,
|
||||
max_depth = 3, min_samples_leaf = 5)
|
||||
|
||||
# Performing training
|
||||
clf_entropy.fit(X_train, y_train)
|
||||
return clf_entropy
|
||||
|
||||
|
||||
# Function to make predictions
|
||||
def prediction(X_test, clf_object):
|
||||
|
||||
# Predicton on test with giniIndex
|
||||
y_pred = clf_object.predict(X_test)
|
||||
print("Predicted values:")
|
||||
print(y_pred)
|
||||
return y_pred
|
||||
|
||||
# Function to calculate accuracy
|
||||
def cal_accuracy(y_test, y_pred):
|
||||
|
||||
print("Confusion Matrix: ",
|
||||
confusion_matrix(y_test, y_pred))
|
||||
|
||||
print ("Accuracy : ",
|
||||
accuracy_score(y_test,y_pred)*100)
|
||||
|
||||
print("Report : ",
|
||||
classification_report(y_test, y_pred))
|
||||
|
||||
# Driver code
|
||||
def main():
|
||||
|
||||
# Building Phase
|
||||
data = importdata()
|
||||
X, Y, X_train, X_test, y_train, y_test = splitdataset(data)
|
||||
clf_gini = train_using_gini(X_train, X_test, y_train)
|
||||
clf_entropy = tarin_using_entropy(X_train, X_test, y_train)
|
||||
|
||||
# Operational Phase
|
||||
print("Results Using Gini Index:")
|
||||
|
||||
# Prediction using gini
|
||||
y_pred_gini = prediction(X_test, clf_gini)
|
||||
cal_accuracy(y_test, y_pred_gini)
|
||||
|
||||
print("Results Using Entropy:")
|
||||
# Prediction using entropy
|
||||
y_pred_entropy = prediction(X_test, clf_entropy)
|
||||
cal_accuracy(y_test, y_pred_entropy)
|
||||
|
||||
|
||||
# Calling main function
|
||||
if __name__=="__main__":
|
||||
main()
|
|
@ -0,0 +1,96 @@
|
|||
import numpy as np
|
||||
import pandas as pd
|
||||
from sklearn.metrics import confusion_matrix
|
||||
from sklearn.model_selection import train_test_split
|
||||
from sklearn.tree import DecisionTreeClassifier
|
||||
from sklearn.metrics import accuracy_score
|
||||
from sklearn.metrics import classification_report
|
||||
|
||||
# Function importing Dataset
|
||||
def importdata():
|
||||
balance_data = pd.read_csv( 'Train.csv',sep= ',', header = None)
|
||||
return dataset
|
||||
|
||||
# Function to split the dataset
|
||||
def splitdataset(dataset):
|
||||
|
||||
# Separating the target variable
|
||||
X = dataset.values[:, 1:5]
|
||||
Y = dataset.values[:, 0]
|
||||
|
||||
# Splitting the dataset into train and test
|
||||
X_train, X_test, y_train, y_test = train_test_split(
|
||||
X, Y, test_size = 0.3, random_state = 100)
|
||||
|
||||
return X, Y, X_train, X_test, y_train, y_test
|
||||
|
||||
# Function to perform training with giniIndex.
|
||||
def train_using_gini(X_train, X_test, y_train):
|
||||
|
||||
# Creating the classifier object
|
||||
clf_gini = DecisionTreeClassifier(criterion = "gini",
|
||||
random_state = 100,max_depth=3, min_samples_leaf=5)
|
||||
|
||||
# Performing training
|
||||
clf_gini.fit(X_train, y_train)
|
||||
return clf_gini
|
||||
|
||||
# Function to perform training with entropy.
|
||||
def tarin_using_entropy(X_train, X_test, y_train):
|
||||
|
||||
# Decision tree with entropy
|
||||
clf_entropy = DecisionTreeClassifier(
|
||||
criterion = "entropy", random_state = 100,
|
||||
max_depth = 3, min_samples_leaf = 5)
|
||||
|
||||
# Performing training
|
||||
clf_entropy.fit(X_train, y_train)
|
||||
return clf_entropy
|
||||
|
||||
|
||||
# Function to make predictions
|
||||
def prediction(X_test, clf_object):
|
||||
|
||||
# Predicton on test with giniIndex
|
||||
y_pred = clf_object.predict(X_test)
|
||||
print("Predicted values:")
|
||||
print(y_pred)
|
||||
return y_pred
|
||||
|
||||
# Function to calculate accuracy
|
||||
def cal_accuracy(y_test, y_pred):
|
||||
|
||||
print("Confusion Matrix: ",
|
||||
confusion_matrix(y_test, y_pred))
|
||||
|
||||
print ("Accuracy : ",
|
||||
accuracy_score(y_test,y_pred)*100)
|
||||
|
||||
print("Report : ",
|
||||
classification_report(y_test, y_pred))
|
||||
|
||||
# Driver code
|
||||
def main():
|
||||
|
||||
# Building Phase
|
||||
data = importdata()
|
||||
X, Y, X_train, X_test, y_train, y_test = splitdataset(data)
|
||||
clf_gini = train_using_gini(X_train, X_test, y_train)
|
||||
clf_entropy = tarin_using_entropy(X_train, X_test, y_train)
|
||||
|
||||
# Operational Phase
|
||||
print("Results Using Gini Index:")
|
||||
|
||||
# Prediction using gini
|
||||
y_pred_gini = prediction(X_test, clf_gini)
|
||||
cal_accuracy(y_test, y_pred_gini)
|
||||
|
||||
print("Results Using Entropy:")
|
||||
# Prediction using entropy
|
||||
y_pred_entropy = prediction(X_test, clf_entropy)
|
||||
cal_accuracy(y_test, y_pred_entropy)
|
||||
|
||||
|
||||
# Calling main function
|
||||
if __name__=="__main__":
|
||||
main()
|
|
@ -0,0 +1,96 @@
|
|||
import numpy as np
|
||||
import pandas as pd
|
||||
from sklearn.metrics import confusion_matrix
|
||||
from sklearn.model_selection import train_test_split
|
||||
from sklearn.tree import DecisionTreeClassifier
|
||||
from sklearn.metrics import accuracy_score
|
||||
from sklearn.metrics import classification_report
|
||||
|
||||
# Function importing Dataset
|
||||
def importdata():
|
||||
dataset = pd.read_csv( 'Train.csv',sep= ',', header = None)
|
||||
return dataset
|
||||
|
||||
# Function to split the dataset
|
||||
def splitdataset(dataset):
|
||||
|
||||
# Separating the target variable
|
||||
X = dataset.values[:, 1:5]
|
||||
Y = dataset.values[:, 0]
|
||||
|
||||
# Splitting the dataset into train and test
|
||||
X_train, X_test, y_train, y_test = train_test_split(
|
||||
X, Y, test_size = 0.3, random_state = 100)
|
||||
|
||||
return X, Y, X_train, X_test, y_train, y_test
|
||||
|
||||
# Function to perform training with giniIndex.
|
||||
def train_using_gini(X_train, X_test, y_train):
|
||||
|
||||
# Creating the classifier object
|
||||
clf_gini = DecisionTreeClassifier(criterion = "gini",
|
||||
random_state = 100,max_depth=3, min_samples_leaf=5)
|
||||
|
||||
# Performing training
|
||||
clf_gini.fit(X_train, y_train)
|
||||
return clf_gini
|
||||
|
||||
# Function to perform training with entropy.
|
||||
def tarin_using_entropy(X_train, X_test, y_train):
|
||||
|
||||
# Decision tree with entropy
|
||||
clf_entropy = DecisionTreeClassifier(
|
||||
criterion = "entropy", random_state = 100,
|
||||
max_depth = 3, min_samples_leaf = 5)
|
||||
|
||||
# Performing training
|
||||
clf_entropy.fit(X_train, y_train)
|
||||
return clf_entropy
|
||||
|
||||
|
||||
# Function to make predictions
|
||||
def prediction(X_test, clf_object):
|
||||
|
||||
# Predicton on test with giniIndex
|
||||
y_pred = clf_object.predict(X_test)
|
||||
print("Predicted values:")
|
||||
print(y_pred)
|
||||
return y_pred
|
||||
|
||||
# Function to calculate accuracy
|
||||
def cal_accuracy(y_test, y_pred):
|
||||
|
||||
print("Confusion Matrix: ",
|
||||
confusion_matrix(y_test, y_pred))
|
||||
|
||||
print ("Accuracy : ",
|
||||
accuracy_score(y_test,y_pred)*100)
|
||||
|
||||
print("Report : ",
|
||||
classification_report(y_test, y_pred))
|
||||
|
||||
# Driver code
|
||||
def main():
|
||||
|
||||
# Building Phase
|
||||
data = importdata()
|
||||
X, Y, X_train, X_test, y_train, y_test = splitdataset(data)
|
||||
clf_gini = train_using_gini(X_train, X_test, y_train)
|
||||
clf_entropy = tarin_using_entropy(X_train, X_test, y_train)
|
||||
|
||||
# Operational Phase
|
||||
print("Results Using Gini Index:")
|
||||
|
||||
# Prediction using gini
|
||||
y_pred_gini = prediction(X_test, clf_gini)
|
||||
cal_accuracy(y_test, y_pred_gini)
|
||||
|
||||
print("Results Using Entropy:")
|
||||
# Prediction using entropy
|
||||
y_pred_entropy = prediction(X_test, clf_entropy)
|
||||
cal_accuracy(y_test, y_pred_entropy)
|
||||
|
||||
|
||||
# Calling main function
|
||||
if __name__=="__main__":
|
||||
main()
|
|
@ -0,0 +1,3 @@
|
|||
{
|
||||
"python.pythonPath": "C:\\Users\\user\\AppData\\Local\\Programs\\Python\\Python38-32\\python.exe"
|
||||
}
|
|
@ -0,0 +1,300 @@
|
|||
-1,1,-1,1,1,1,-1,-1,-1,1,0,1,1,1,-1,1,1
|
||||
-1,1,-1,1,1,1,-1,-1,-1,-1,-1,1,1,1,-1,0,1
|
||||
0,1,1,0,1,1,-1,-1,-1,-1,1,-1,1,1,-1,-1,2
|
||||
-1,1,1,-1,0,1,-1,-1,-1,-1,1,-1,1,-1,-1,1,2
|
||||
1,1,1,-1,1,1,-1,-1,-1,-1,1,0,1,1,1,1,2
|
||||
-1,1,1,-1,1,1,-1,-1,-1,-1,-1,-1,1,1,1,1,2
|
||||
-1,1,-1,1,1,1,-1,-1,-1,-1,-1,-1,0,1,1,1,2
|
||||
-1,1,-1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,0,1,1
|
||||
-1,1,-1,1,1,1,-1,-1,-1,-1,-1,1,1,1,-1,1,1
|
||||
1,1,1,-1,-1,-1,1,1,1,-1,-1,-1,-1,-1,0,0,2
|
||||
-1,1,-1,1,1,-1,-1,-1,-1,-1,0,0,1,1,-1,-1,1
|
||||
-1,1,-1,1,1,1,-1,-1,-1,-1,1,0,1,1,0,0,1
|
||||
-1,1,1,-1,-1,-1,1,1,1,-1,-1,-1,1,-1,0,0,2
|
||||
1,1,1,-1,-1,1,1,1,0,1,1,0,-1,-1,1,0,2
|
||||
-1,1,-1,1,1,1,-1,-1,-1,-1,-1,1,0,0,-1,0,1
|
||||
-1,1,-1,1,1,1,-1,-1,-1,1,-1,1,1,0,-1,0,1
|
||||
1,-1,1,-1,-1,1,-1,1,0,1,1,1,0,-1,-1,1,2
|
||||
1,0,1,-1,-1,-1,1,1,1,-1,-1,-1,1,-1,1,1,2
|
||||
-1,1,-1,1,1,1,-1,-1,-1,-1,-1,0,1,1,-1,-1,1
|
||||
1,1,1,-1,-1,-1,1,1,1,-1,1,-1,-1,-1,1,1,2
|
||||
1,1,1,-1,-1,0,1,1,-1,-1,1,-1,-1,-1,1,1,2
|
||||
1,1,1,-1,-1,-1,1,1,1,-1,-1,-1,0,0,1,1,2
|
||||
1,0,1,-1,-1,-1,1,1,1,-1,-1,0,-1,-1,1,1,2
|
||||
1,1,1,-1,-1,-1,1,1,1,-1,-1,-1,-1,-1,1,1,2
|
||||
1,-1,1,-1,-1,-1,1,1,1,-1,-1,-1,-1,-1,1,0,2
|
||||
1,-1,1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,2
|
||||
1,-1,1,-1,-1,-1,1,1,1,-1,1,-1,-1,-1,1,1,2
|
||||
1,1,1,-1,-1,-1,1,1,1,-1,1,-1,-1,-1,1,1,2
|
||||
1,-1,-1,1,1,-1,1,1,1,-1,-1,1,1,1,-1,1,1
|
||||
1,1,1,-1,-1,-1,1,1,1,-1,1,-1,-1,-1,1,1,2
|
||||
-1,1,-1,1,1,1,-1,-1,-1,-1,-1,1,1,1,-1,-1,1
|
||||
1,1,1,-1,-1,-1,1,1,1,-1,1,-1,-1,-1,1,0,2
|
||||
1,1,1,-1,-1,-1,1,1,1,1,-1,-1,1,-1,1,1,2
|
||||
-1,1,-1,1,1,1,-1,-1,-1,-1,-1,1,1,1,-1,1,1
|
||||
1,1,1,-1,-1,-1,1,1,1,-1,-1,-1,-1,-1,1,1,2
|
||||
-1,1,-1,1,1,1,-1,-1,-1,-1,-1,1,1,1,-1,-1,1
|
||||
1,0,-1,1,1,1,-1,-1,-1,1,-1,1,0,1,-1,1,1
|
||||
1,1,-1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,-1,1,1
|
||||
-1,1,-1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,-1,1
|
||||
1,-1,1,-1,-1,-1,1,1,1,1,1,-1,1,-1,1,1,2
|
||||
1,1,1,-1,-1,-1,1,1,1,-1,0,-1,-1,-1,-1,0,2
|
||||
1,1,1,-1,-1,-1,1,1,1,-1,-1,-1,-1,-1,1,0,2
|
||||
1,-1,1,-1,-1,-1,1,1,1,-1,-1,-1,-1,-1,-1,1,2
|
||||
1,-1,1,-1,-1,-1,1,1,1,-1,-1,-1,-1,-1,1,1,2
|
||||
1,1,1,-1,-1,-1,1,1,1,-1,1,-1,-1,-1,-1,0,2
|
||||
1,1,1,-1,-1,-1,1,1,0,-1,1,-1,-1,-1,1,0,2
|
||||
1,1,1,-1,-1,-1,1,1,1,-1,-1,-1,-1,-1,-1,1,2
|
||||
1,-1,1,-1,-1,-1,1,1,0,-1,-1,-1,-1,-1,-1,0,2
|
||||
1,1,1,-1,-1,-1,1,1,-1,-1,-1,-1,-1,1,-1,1,2
|
||||
-1,0,-1,1,1,1,-1,-1,-1,-1,-1,1,1,1,-1,-1,1
|
||||
1,1,1,-1,-1,-1,1,1,1,-1,1,-1,-1,-1,1,1,2
|
||||
-1,1,-1,1,1,1,-1,0,-1,-1,-1,1,1,1,-1,1,1
|
||||
1,1,1,-1,-1,-1,1,1,1,-1,-1,-1,-1,-1,0,0,2
|
||||
1,1,-1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,-1,1
|
||||
1,1,1,-1,-1,1,0,1,-1,-1,1,1,-1,1,-1,0,2
|
||||
-1,1,-1,1,1,1,-1,-1,-1,1,1,1,1,1,-1,-1,1
|
||||
-1,1,-1,1,1,1,-1,-1,-1,1,1,1,1,1,-1,1,1
|
||||
-1,1,-1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,1,1
|
||||
-1,1,-1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,1,1
|
||||
-1,1,-1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,0,1
|
||||
1,1,1,-1,-1,0,1,1,1,1,-1,-1,-1,-1,1,0,2
|
||||
-1,1,-1,1,1,1,-1,-1,-1,-1,-1,1,1,1,-1,-1,1
|
||||
1,1,1,-1,-1,-1,1,1,1,-1,-1,-1,-1,-1,-1,0,2
|
||||
1,1,1,-1,-1,-1,1,1,1,-1,1,-1,-1,-1,-1,1,2
|
||||
1,1,1,-1,-1,-1,1,1,1,-1,1,0,-1,-1,-1,1,2
|
||||
1,1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,-1,1,1
|
||||
-1,1,-1,1,1,1,1,-1,-1,-1,1,1,1,1,-1,1,1
|
||||
-1,1,-1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,-1,1
|
||||
1,0,1,-1,-1,-1,1,1,1,-1,-1,-1,1,-1,1,1,2
|
||||
1,1,1,-1,-1,-1,1,1,1,-1,-1,-1,-1,-1,1,1,2
|
||||
1,-1,1,-1,-1,-1,1,1,1,-1,-1,-1,1,-1,1,0,2
|
||||
1,1,1,1,-1,-1,1,1,1,1,1,-1,-1,1,-1,1,1
|
||||
1,1,1,-1,-1,-1,1,1,1,-1,1,-1,-1,-1,1,0,2
|
||||
1,-1,1,1,1,-1,1,-1,1,1,-1,-1,1,1,-1,1,1
|
||||
1,-1,1,-1,-1,1,1,1,1,1,1,-1,-1,1,1,1,2
|
||||
-1,1,1,1,1,1,-1,-1,-1,1,1,-1,1,1,-1,-1,2
|
||||
-1,1,1,-1,1,1,-1,-1,-1,1,1,1,1,1,-1,0,2
|
||||
-1,1,1,1,1,1,-1,1,1,1,1,1,1,1,-1,1,2
|
||||
1,1,1,-1,1,1,-1,-1,-1,1,1,-1,1,1,-1,1,2
|
||||
-1,-1,-1,1,1,-1,-1,-1,-1,1,-1,1,1,1,-1,-1,1
|
||||
1,-1,1,-1,-1,1,1,1,1,1,-1,1,-1,1,-1,0,2
|
||||
1,-1,1,-1,-1,-1,1,1,0,1,1,1,-1,1,-1,1,2
|
||||
-1,-1,-1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,1,1
|
||||
-1,-1,-1,1,1,1,-1,-1,-1,-1,-1,1,1,1,-1,-1,1
|
||||
-1,0,-1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,-1,1
|
||||
-1,-1,1,-1,1,1,-1,-1,-1,1,1,1,1,1,-1,1,2
|
||||
-1,-1,-1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,-1,1
|
||||
-1,-1,-1,1,1,1,-1,-1,-1,-1,-1,1,1,1,-1,-1,1
|
||||
-1,1,1,-1,1,1,1,-1,1,1,1,-1,1,1,-1,1,2
|
||||
-1,-1,-1,1,1,1,-1,-1,-1,1,-1,0,1,1,-1,0,1
|
||||
1,-1,1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,2
|
||||
1,-1,1,-1,-1,-1,1,1,1,1,1,-1,-1,-1,1,1,2
|
||||
1,1,1,-1,-1,-1,1,1,-1,1,1,-1,-1,0,1,1,2
|
||||
1,-1,1,-1,-1,-1,1,-1,1,1,1,-1,-1,-1,1,1,2
|
||||
1,-1,1,-1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,2
|
||||
1,-1,1,-1,1,1,-1,0,0,-1,1,0,0,0,1,1,2
|
||||
-1,-1,0,-1,1,1,-1,-1,-1,-1,1,1,1,1,-1,1,2
|
||||
1,-1,-1,-1,1,1,1,-1,-1,1,1,-1,-1,1,-1,1,2
|
||||
1,1,1,-1,-1,1,1,1,1,1,-1,-1,-1,-1,-1,1,2
|
||||
-1,-1,-1,1,1,1,-1,-1,-1,1,0,1,1,1,-1,-1,1
|
||||
1,-1,-1,-1,1,1,-1,-1,-1,-1,1,1,-1,1,-1,1,2
|
||||
1,-1,1,-1,1,1,1,-1,-1,-1,1,-1,-1,1,-1,1,2
|
||||
1,-1,1,-1,1,1,1,-1,0,-1,1,-1,1,1,1,0,2
|
||||
1,-1,-1,-1,1,1,0,-1,0,-1,-1,-1,-1,1,0,-1,2
|
||||
0,0,0,0,-1,1,1,1,1,1,0,-1,1,1,-1,0,2
|
||||
1,1,1,-1,-1,-1,-1,1,1,-1,1,-1,-1,-1,1,1,2
|
||||
-1,1,-1,1,1,1,-1,-1,-1,-1,-1,1,1,1,-1,1,1
|
||||
-1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1
|
||||
1,0,1,-1,-1,-1,1,1,1,-1,-1,-1,-1,-1,1,0,2
|
||||
1,0,1,-1,-1,-1,1,1,1,-1,-1,-1,-1,-1,1,0,2
|
||||
-1,-1,1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,2
|
||||
-1,0,-1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,1,1
|
||||
-1,0,1,-1,-1,1,1,1,-1,1,-1,-1,-1,-1,1,0,2
|
||||
-1,0,-1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,-1,1
|
||||
1,0,1,-1,-1,-1,1,1,1,-1,-1,-1,-1,-1,1,0,2
|
||||
-1,0,1,-1,0,0,1,1,1,1,0,0,-1,-1,1,1,2
|
||||
1,-1,1,-1,-1,-1,1,1,1,-1,1,-1,-1,-1,1,1,2
|
||||
1,1,1,1,1,-1,1,-1,-1,-1,-1,1,1,1,-1,1,1
|
||||
-1,1,1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1,1,1,2
|
||||
-1,-1,-1,1,1,1,-1,-1,-1,-1,-1,1,1,1,-1,-1,1
|
||||
-1,0,0,1,1,1,-1,-1,-1,1,-1,1,1,1,0,1,1
|
||||
-1,0,-1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,1,1
|
||||
-1,-1,-1,1,1,1,-1,-1,-1,1,-1,1,-1,1,-1,1,1
|
||||
1,0,-1,1,1,1,-1,1,-1,-1,-1,1,1,1,-1,1,1
|
||||
-1,0,1,-1,-1,-1,1,1,1,-1,-1,-1,-1,-1,1,1,2
|
||||
-1,0,-1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,1,1
|
||||
-1,0,-1,1,1,1,-1,-1,-1,-1,-1,1,1,1,-1,-1,1
|
||||
-1,0,1,-1,-1,-1,1,1,1,1,1,-1,-1,1,1,1,2
|
||||
-1,0,1,-1,-1,1,-1,1,-1,1,1,-1,-1,-1,1,1,2
|
||||
0,0,1,-1,-1,-1,1,1,0,-1,0,0,0,0,0,0,2
|
||||
1,0,1,-1,0,0,1,1,1,-1,-1,-1,-1,-1,1,0,2
|
||||
-1,-1,1,-1,-1,1,-1,1,1,1,-1,-1,-1,1,-1,1,2
|
||||
-1,-1,-1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,0,1
|
||||
-1,-1,-1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,1,1
|
||||
-1,-1,-1,1,1,1,-1,-1,-1,-1,-1,1,1,1,-1,0,1
|
||||
-1,-1,-1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,-1,1
|
||||
-1,1,-1,1,1,1,-1,-1,-1,1,1,1,1,-1,-1,1,1
|
||||
-1,0,1,-1,-1,1,1,1,1,1,-1,-1,-1,1,1,1,2
|
||||
-1,-1,1,-1,-1,1,1,1,1,1,-1,-1,-1,1,-1,1,2
|
||||
1,-1,1,-1,-1,1,1,1,1,-1,-1,-1,-1,-1,1,1,2
|
||||
-1,-1,-1,1,-1,-1,1,1,1,1,-1,-1,1,1,-1,1,1
|
||||
-1,-1,-1,1,1,1,1,1,1,1,-1,1,1,1,0,1,1
|
||||
-1,-1,-1,1,1,1,1,1,1,1,-1,1,1,1,-1,1,1
|
||||
0,1,-1,-1,-1,-1,1,1,1,1,1,-1,-1,1,1,1,2
|
||||
-1,0,-1,-1,-1,1,1,1,1,1,-1,-1,-1,1,-1,0,2
|
||||
-1,-1,1,-1,-1,1,1,1,1,1,-1,-1,-1,1,0,1,2
|
||||
-1,1,-1,1,1,1,-1,-1,-1,-1,-1,1,1,1,-1,1,1
|
||||
-1,-1,-1,-1,-1,-1,1,1,1,1,-1,1,1,1,1,1,2
|
||||
-1,1,-1,1,1,1,-1,-1,-1,1,1,1,1,1,-1,1,1
|
||||
-1,-1,1,-1,-1,-1,1,1,1,1,-1,-1,1,-1,1,1,2
|
||||
1,1,-1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,1,1
|
||||
1,1,0,1,1,1,-1,-1,1,-1,1,0,1,1,-1,-1,2
|
||||
-1,1,1,-1,-1,1,-1,1,1,1,1,-1,1,-1,1,1,2
|
||||
-1,-1,1,-1,-1,1,1,1,1,1,1,-1,1,1,-1,1,2
|
||||
-1,1,-1,1,1,1,-1,-1,-1,-1,-1,1,1,1,-1,-1,1
|
||||
1,1,-1,1,1,1,-1,0,-1,-1,1,1,1,1,-1,-1,1
|
||||
1,1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,-1,-1,1
|
||||
-1,1,1,-1,-1,1,-1,1,1,-1,1,-1,0,0,0,0,2
|
||||
-1,1,-1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,-1,1
|
||||
-1,1,1,-1,0,1,1,1,1,1,1,-1,-1,0,-1,0,2
|
||||
-1,1,-1,-1,1,1,-1,-1,-1,-1,-1,1,1,1,1,1,2
|
||||
-1,-1,-1,-1,1,1,1,-1,-1,-1,-1,1,1,1,-1,1,2
|
||||
-1,1,1,-1,1,1,1,-1,-1,-1,1,1,1,1,-1,1,2
|
||||
-1,1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,-1,1,1
|
||||
1,1,-1,-1,1,1,-1,-1,-1,1,1,1,1,1,-1,0,2
|
||||
-1,1,1,-1,-1,1,1,1,1,1,1,-1,1,-1,1,0,2
|
||||
1,-1,1,1,1,1,1,1,-1,1,-1,1,-1,1,1,1,1
|
||||
1,-1,1,1,1,1,1,1,-1,1,1,1,-1,1,1,1,1
|
||||
-1,-1,1,1,1,1,-1,-1,1,-1,-1,-1,1,1,1,0,2
|
||||
1,-1,1,-1,-1,-1,1,1,1,1,1,-1,-1,1,-1,1,2
|
||||
1,-1,1,-1,-1,-1,0,1,1,0,-1,-1,-1,-1,1,0,2
|
||||
-1,0,-1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,1,1
|
||||
-1,1,1,-1,-1,-1,1,1,1,1,-1,-1,0,-1,1,1,2
|
||||
-1,-1,-1,-1,1,1,-1,-1,-1,1,1,1,1,1,-1,1,2
|
||||
1,0,1,-1,-1,-1,1,1,1,-1,-1,-1,-1,-1,1,0,2
|
||||
-1,1,1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,2
|
||||
-1,-1,1,1,-1,-1,1,1,1,1,-1,-1,-1,1,1,1,1
|
||||
-1,-1,1,-1,-1,-1,1,1,1,1,1,0,-1,-1,1,1,2
|
||||
0,-1,1,-1,-1,-1,1,1,1,1,1,0,-1,-1,1,0,2
|
||||
1,-1,1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,2
|
||||
0,0,1,-1,-1,-1,1,1,1,0,0,-1,-1,-1,0,0,2
|
||||
-1,-1,1,-1,-1,-1,1,1,1,1,1,-1,-1,-1,1,1,2
|
||||
1,0,1,-1,-1,-1,1,1,1,-1,-1,-1,-1,-1,1,1,2
|
||||
0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,2
|
||||
-1,-1,1,-1,-1,-1,1,1,1,1,1,-1,-1,-1,1,1,2
|
||||
1,-1,1,-1,-1,-1,1,1,1,1,-1,0,-1,-1,1,1,2
|
||||
-1,1,1,-1,-1,-1,1,1,1,1,1,-1,-1,-1,1,1,2
|
||||
1,-1,1,-1,-1,-1,1,1,1,-1,-1,-1,-1,-1,1,0,2
|
||||
1,0,-1,1,1,1,1,1,-1,-1,-1,1,0,1,0,0,1
|
||||
1,-1,1,-1,-1,-1,1,1,1,-1,-1,-1,-1,-1,1,1,2
|
||||
-1,0,-1,1,1,1,-1,-1,-1,-1,-1,1,1,1,-1,0,1
|
||||
-1,1,-1,1,1,1,-1,0,-1,1,-1,1,1,1,-1,0,1
|
||||
-1,-1,-1,-1,-1,1,1,1,1,-1,1,-1,-1,1,1,1,2
|
||||
-1,-1,1,-1,-1,-1,1,1,1,-1,-1,-1,-1,-1,1,1,2
|
||||
-1,-1,1,-1,-1,1,1,0,1,1,1,-1,-1,-1,1,1,2
|
||||
-1,-1,-1,1,1,1,-1,-1,-1,-1,-1,1,1,1,-1,0,1
|
||||
-1,-1,1,-1,-1,1,1,1,1,-1,1,1,-1,1,1,0,2
|
||||
-1,0,1,1,1,1,-1,-1,-1,1,-1,-1,-1,1,-1,1,1
|
||||
-1,-1,1,-1,-1,-1,1,1,1,1,1,-1,0,-1,1,0,2
|
||||
1,1,-1,-1,-1,-1,1,1,0,-1,1,-1,-1,-1,1,0,2
|
||||
-1,-1,1,-1,-1,-1,1,1,1,-1,-1,-1,-1,1,1,1,2
|
||||
1,1,1,-1,-1,-1,1,1,1,-1,-1,-1,-1,-1,1,1,2
|
||||
1,-1,1,-1,-1,1,1,1,1,1,1,-1,-1,-1,1,1,2
|
||||
1,-1,1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,2
|
||||
-1,-1,1,1,1,1,1,-1,-1,-1,-1,1,1,1,-1,1,1
|
||||
-1,-1,1,-1,-1,1,1,1,1,1,-1,1,-1,-1,-1,1,2
|
||||
-1,-1,-1,1,1,1,-1,-1,-1,1,-1,1,-1,1,-1,1,1
|
||||
1,0,-1,1,1,1,1,-1,-1,1,-1,1,1,1,-1,1,1
|
||||
-1,-1,1,-1,-1,-1,1,1,1,-1,-1,0,-1,-1,1,1,2
|
||||
1,1,1,-1,-1,-1,1,1,1,1,1,-1,-1,-1,-1,1,2
|
||||
-1,-1,1,-1,-1,1,1,1,1,-1,-1,-1,-1,-1,1,1,2
|
||||
-1,1,-1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,1,1
|
||||
-1,-1,1,-1,-1,-1,1,1,1,-1,1,-1,-1,-1,1,1,2
|
||||
-1,1,1,-1,-1,1,-1,1,1,-1,1,-1,1,-1,1,1,2
|
||||
1,1,-1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,1,1
|
||||
-1,1,1,1,1,1,-1,-1,-1,1,1,1,1,1,1,0,2
|
||||
1,1,1,-1,1,1,-1,-1,0,1,-1,-1,-1,1,1,0,2
|
||||
-1,1,-1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,-1,1
|
||||
1,0,1,-1,-1,-1,1,1,1,-1,0,-1,-1,-1,1,0,2
|
||||
-1,1,1,-1,-1,-1,-1,1,1,-1,1,-1,-1,1,1,1,2
|
||||
-1,-1,1,-1,-1,-1,1,1,1,-1,-1,-1,-1,-1,1,0,2
|
||||
-1,1,1,-1,1,1,-1,-1,-1,-1,1,-1,-1,-1,1,0,2
|
||||
1,-1,1,-1,-1,-1,1,1,1,-1,1,-1,-1,-1,1,0,2
|
||||
-1,-1,-1,1,1,-1,-1,-1,-1,-1,-1,1,1,1,-1,1,1
|
||||
-1,1,-1,1,1,1,-1,-1,-1,1,-1,0,1,1,-1,-1,1
|
||||
-1,0,-1,1,1,1,-1,-1,-1,-1,-1,1,1,1,-1,1,1
|
||||
-1,-1,1,-1,-1,1,1,1,1,-1,1,-1,-1,1,1,1,2
|
||||
1,-1,1,-1,-1,-1,1,1,1,-1,-1,-1,-1,-1,0,1,2
|
||||
-1,1,-1,1,1,1,-1,-1,-1,-1,-1,1,1,0,-1,1,1
|
||||
-1,1,1,1,1,1,1,-1,1,1,-1,1,1,1,-1,1,1
|
||||
-1,1,-1,1,1,1,-1,-1,-1,-1,-1,1,1,1,-1,1,1
|
||||
-1,1,-1,1,1,1,-1,-1,1,1,-1,1,1,1,-1,1,1
|
||||
-1,1,1,-1,-1,-1,1,1,-1,-1,1,-1,-1,-1,1,0,2
|
||||
-1,1,-1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,1,1
|
||||
-1,-1,1,-1,-1,1,1,1,1,1,-1,1,-1,1,1,0,2
|
||||
-1,-1,-1,1,1,1,-1,-1,-1,1,-1,1,-1,1,-1,1,1
|
||||
-1,-1,1,-1,-1,-1,1,1,1,-1,-1,-1,-1,-1,1,1,2
|
||||
1,-1,1,-1,-1,1,1,1,-1,-1,-1,1,1,-1,-1,1,2
|
||||
1,1,1,-1,-1,-1,1,1,0,1,-1,-1,-1,-1,1,0,2
|
||||
-1,-1,-1,1,1,1,1,-1,-1,1,-1,-1,-1,1,1,1,1
|
||||
-1,-1,-1,1,-1,1,1,0,1,-1,-1,1,1,1,-1,1,1
|
||||
1,-1,1,-1,-1,-1,1,1,1,1,1,-1,-1,1,1,1,2
|
||||
-1,-1,-1,-1,1,1,1,-1,-1,-1,-1,0,-1,1,1,1,1
|
||||
-1,1,1,-1,-1,-1,1,1,0,1,-1,-1,1,-1,1,1,2
|
||||
1,-1,1,-1,-1,-1,-1,1,1,1,-1,-1,-1,-1,1,1,2
|
||||
1,-1,1,-1,-1,-1,1,1,1,1,1,-1,-1,-1,1,1,2
|
||||
-1,-1,1,-1,1,-1,1,1,1,-1,-1,-1,-1,1,0,1,2
|
||||
-1,1,-1,1,1,1,0,-1,-1,-1,-1,0,1,1,-1,-1,1
|
||||
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1
|
||||
1,-1,1,-1,-1,-1,1,1,0,-1,1,-1,-1,-1,1,1,2
|
||||
-1,1,-1,1,1,1,-1,-1,-1,-1,-1,1,1,1,-1,-1,1
|
||||
-1,1,-1,1,1,1,-1,-1,-1,-1,-1,1,1,1,-1,-1,1
|
||||
1,1,1,-1,-1,1,1,1,1,-1,-1,-1,-1,-1,1,1,2
|
||||
-1,1,-1,1,1,1,-1,-1,-1,-1,-1,1,1,1,-1,1,1
|
||||
1,-1,1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,-1,1,2
|
||||
1,-1,1,-1,-1,-1,1,1,1,1,-1,-1,-1,1,1,1,2
|
||||
-1,-1,-1,1,1,-1,-1,-1,-1,-1,-1,1,-1,1,-1,-1,1
|
||||
-1,-1,-1,1,1,-1,-1,-1,-1,-1,-1,1,-1,1,0,1,1
|
||||
-1,-1,1,-1,-1,-1,1,1,1,-1,1,-1,-1,-1,1,1,2
|
||||
1,-1,1,-1,-1,-1,1,1,1,-1,-1,-1,-1,-1,-1,1,2
|
||||
1,-1,1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,-1,1,2
|
||||
1,-1,1,-1,-1,0,1,1,1,-1,0,0,-1,0,0,0,2
|
||||
1,-1,1,-1,-1,-1,1,1,1,1,-1,-1,0,-1,1,1,2
|
||||
1,-1,1,-1,-1,-1,1,1,1,-1,-1,-1,-1,-1,1,0,2
|
||||
1,-1,1,-1,-1,-1,1,1,1,-1,-1,-1,-1,-1,1,0,2
|
||||
1,-1,1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,-1,1,2
|
||||
-1,-1,-1,1,1,1,-1,-1,-1,1,-1,1,-1,1,-1,1,1
|
||||
1,-1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1,1,-1,1,1
|
||||
1,-1,1,-1,-1,-1,1,1,1,-1,-1,-1,-1,-1,1,0,2
|
||||
1,-1,1,-1,-1,-1,1,1,1,-1,-1,-1,-1,-1,-1,1,2
|
||||
1,1,1,-1,-1,-1,1,1,1,-1,-1,-1,-1,-1,1,1,2
|
||||
-1,1,1,-1,-1,1,1,1,1,-1,0,-1,-1,-1,-1,1,2
|
||||
1,-1,1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,0,2
|
||||
-1,-1,-1,1,1,-1,1,1,-1,1,-1,1,1,1,0,1,1
|
||||
1,-1,-1,1,1,-1,1,-1,-1,1,-1,-1,-1,1,1,1,1
|
||||
-1,-1,1,-1,1,1,-1,-1,-1,-1,0,-1,1,1,-1,-1,2
|
||||
-1,-1,-1,1,1,1,-1,-1,-1,-1,-1,1,1,1,1,-1,1
|
||||
-1,-1,1,1,1,1,1,1,-1,1,-1,-1,-1,1,-1,1,1
|
||||
-1,-1,-1,1,1,1,-1,-1,-1,-1,-1,1,1,1,-1,1,1
|
||||
-1,-1,-1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,-1,1
|
||||
-1,-1,1,-1,-1,-1,1,1,1,1,-1,-1,-1,1,-1,1,2
|
||||
1,-1,1,1,1,1,1,1,-1,-1,-1,-1,-1,1,-1,0,1
|
||||
1,-1,-1,1,1,1,-1,-1,-1,1,-1,0,1,1,-1,-1,1
|
||||
-1,-1,-1,1,1,1,-1,-1,-1,-1,-1,1,1,1,-1,1,1
|
||||
-1,-1,1,-1,-1,1,1,1,1,1,1,-1,-1,-1,0,1,2
|
||||
-1,-1,1,-1,-1,1,1,1,1,1,1,-1,-1,-1,1,1,2
|
||||
-1,-1,1,-1,-1,1,0,1,0,1,1,1,-1,1,1,0,2
|
||||
1,1,1,0,-1,1,1,1,1,-1,1,-1,1,-1,0,1,2
|
||||
1,1,1,-1,1,1,-1,1,-1,1,1,-1,1,1,1,1,2
|
||||
1,1,1,-1,1,1,-1,1,-1,1,1,-1,1,1,-1,0,2
|
||||
1,-1,1,-1,0,1,0,1,1,1,-1,-1,1,1,-1,1,2
|
||||
1,-1,1,-1,-1,1,1,1,1,1,-1,0,-1,1,-1,1,2
|
||||
1,-1,1,-1,-1,1,1,1,-1,1,1,-1,1,1,1,1,2
|
||||
1,1,1,-1,-1,1,1,1,1,1,1,-1,1,1,1,1,2
|
||||
-1,1,1,-1,-1,1,1,1,-1,1,1,-1,1,1,-1,0,2
|
||||
-1,1,-1,1,1,1,0,0,-1,1,-1,1,0,0,0,0,1
|
||||
-1,-1,1,1,1,1,-1,-1,-1,1,-1,1,1,1,1,1,1
|
||||
1,1,1,-1,-1,1,1,1,1,1,-1,-1,0,-1,1,0,2
|
||||
-1,1,-1,-1,-1,-1,1,1,1,1,1,-1,-1,-1,1,1,2
|
||||
-1,1,1,-1,-1,1,1,1,1,1,-1,-1,1,1,1,1,2
|
|
Binary file not shown.
|
@ -0,0 +1,96 @@
|
|||
import numpy as np
|
||||
import pandas as pd
|
||||
from sklearn.metrics import confusion_matrix
|
||||
from sklearn.model_selection import train_test_split
|
||||
from sklearn.tree import DecisionTreeClassifier
|
||||
from sklearn.metrics import accuracy_score
|
||||
from sklearn.metrics import classification_report
|
||||
|
||||
# Function importing Dataset
|
||||
def importdata():
|
||||
dataset = pd.read_csv( 'Train.csv',sep= ',', header = None)
|
||||
return dataset
|
||||
|
||||
# Function to split the dataset
|
||||
def splitdataset(dataset):
|
||||
|
||||
# Separating the target variable
|
||||
X = dataset.values[:, 1:5]
|
||||
Y = dataset.values[:, 0]
|
||||
|
||||
# Splitting the dataset into train and test
|
||||
X_train, X_test, y_train, y_test = train_test_split(
|
||||
X, Y, test_size = 0.3, random_state = 100)
|
||||
|
||||
return X, Y, X_train, X_test, y_train, y_test
|
||||
|
||||
# Function to perform training with giniIndex.
|
||||
def train_using_gini(X_train, X_test, y_train):
|
||||
|
||||
# Creating the classifier object
|
||||
clf_gini = DecisionTreeClassifier(criterion = "gini",
|
||||
random_state = 100,max_depth=3, min_samples_leaf=5)
|
||||
|
||||
# Performing training
|
||||
clf_gini.fit(X_train, y_train)
|
||||
return clf_gini
|
||||
|
||||
# Function to perform training with entropy.
|
||||
def tarin_using_entropy(X_train, X_test, y_train):
|
||||
|
||||
# Decision tree with entropy
|
||||
clf_entropy = DecisionTreeClassifier(
|
||||
criterion = "entropy", random_state = 100,
|
||||
max_depth = 3, min_samples_leaf = 5)
|
||||
|
||||
# Performing training
|
||||
clf_entropy.fit(X_train, y_train)
|
||||
return clf_entropy
|
||||
|
||||
|
||||
# Function to make predictions
|
||||
def prediction(X_test, clf_object):
|
||||
|
||||
# Predicton on test with giniIndex
|
||||
y_pred = clf_object.predict(X_test)
|
||||
print("Predicted values:")
|
||||
print(y_pred)
|
||||
return y_pred
|
||||
|
||||
# Function to calculate accuracy
|
||||
def cal_accuracy(y_test, y_pred):
|
||||
|
||||
print("Confusion Matrix: ",
|
||||
confusion_matrix(y_test, y_pred))
|
||||
|
||||
print ("Accuracy : ",
|
||||
accuracy_score(y_test,y_pred)*100)
|
||||
|
||||
print("Report : ",
|
||||
classification_report(y_test, y_pred))
|
||||
|
||||
# Driver code
|
||||
def main():
|
||||
|
||||
# Building Phase
|
||||
data = importdata()
|
||||
X, Y, X_train, X_test, y_train, y_test = splitdataset(data)
|
||||
clf_gini = train_using_gini(X_train, X_test, y_train)
|
||||
clf_entropy = tarin_using_entropy(X_train, X_test, y_train)
|
||||
|
||||
# Operational Phase
|
||||
print("Results Using Gini Index:")
|
||||
|
||||
# Prediction using gini
|
||||
y_pred_gini = prediction(X_test, clf_gini)
|
||||
cal_accuracy(y_test, y_pred_gini)
|
||||
|
||||
print("Results Using Entropy:")
|
||||
# Prediction using entropy
|
||||
y_pred_entropy = prediction(X_test, clf_entropy)
|
||||
cal_accuracy(y_test, y_pred_entropy)
|
||||
|
||||
|
||||
# Calling main function
|
||||
if __name__=="__main__":
|
||||
main()
|
Loading…
Reference in New Issue