Initial Commit
commit
8c0c0b9d78
|
@ -0,0 +1,103 @@
|
||||||
|
import numpy as np
|
||||||
|
import pandas as pd
|
||||||
|
from sklearn.metrics import confusion_matrix
|
||||||
|
from sklearn.cross_validation import train_test_split
|
||||||
|
from sklearn.tree import DecisionTreeClassifier
|
||||||
|
from sklearn.metrics import accuracy_score
|
||||||
|
from sklearn.metrics import classification_report
|
||||||
|
|
||||||
|
# Function importing Dataset
|
||||||
|
def importdata():
|
||||||
|
balance_data = pd.read_excel('Train.xlsx', sheet_name="Sheet1").to_numpy()
|
||||||
|
|
||||||
|
# Printing the dataswet shape
|
||||||
|
print ("Dataset Length: ", len(balance_data))
|
||||||
|
print ("Dataset Shape: ", balance_data.shape)
|
||||||
|
|
||||||
|
# Printing the dataset obseravtions
|
||||||
|
print ("Dataset: ",balance_data.head())
|
||||||
|
return balance_data
|
||||||
|
|
||||||
|
# Function to split the dataset
|
||||||
|
def splitdataset(balance_data):
|
||||||
|
|
||||||
|
# Separating the target variable
|
||||||
|
X = balance_data.values[:, 1:5]
|
||||||
|
Y = balance_data.values[:, 0]
|
||||||
|
|
||||||
|
# Splitting the dataset into train and test
|
||||||
|
X_train, X_test, y_train, y_test = train_test_split(
|
||||||
|
X, Y, test_size = 0.3, random_state = 100)
|
||||||
|
|
||||||
|
return X, Y, X_train, X_test, y_train, y_test
|
||||||
|
|
||||||
|
# Function to perform training with giniIndex.
|
||||||
|
def train_using_gini(X_train, X_test, y_train):
|
||||||
|
|
||||||
|
# Creating the classifier object
|
||||||
|
clf_gini = DecisionTreeClassifier(criterion = "gini",
|
||||||
|
random_state = 100,max_depth=3, min_samples_leaf=5)
|
||||||
|
|
||||||
|
# Performing training
|
||||||
|
clf_gini.fit(X_train, y_train)
|
||||||
|
return clf_gini
|
||||||
|
|
||||||
|
# Function to perform training with entropy.
|
||||||
|
def tarin_using_entropy(X_train, X_test, y_train):
|
||||||
|
|
||||||
|
# Decision tree with entropy
|
||||||
|
clf_entropy = DecisionTreeClassifier(
|
||||||
|
criterion = "entropy", random_state = 100,
|
||||||
|
max_depth = 3, min_samples_leaf = 5)
|
||||||
|
|
||||||
|
# Performing training
|
||||||
|
clf_entropy.fit(X_train, y_train)
|
||||||
|
return clf_entropy
|
||||||
|
|
||||||
|
|
||||||
|
# Function to make predictions
|
||||||
|
def prediction(X_test, clf_object):
|
||||||
|
|
||||||
|
# Predicton on test with giniIndex
|
||||||
|
y_pred = clf_object.predict(X_test)
|
||||||
|
print("Predicted values:")
|
||||||
|
print(y_pred)
|
||||||
|
return y_pred
|
||||||
|
|
||||||
|
# Function to calculate accuracy
|
||||||
|
def cal_accuracy(y_test, y_pred):
|
||||||
|
|
||||||
|
print("Confusion Matrix: ",
|
||||||
|
confusion_matrix(y_test, y_pred))
|
||||||
|
|
||||||
|
print ("Accuracy : ",
|
||||||
|
accuracy_score(y_test,y_pred)*100)
|
||||||
|
|
||||||
|
print("Report : ",
|
||||||
|
classification_report(y_test, y_pred))
|
||||||
|
|
||||||
|
# Driver code
|
||||||
|
def main():
|
||||||
|
|
||||||
|
# Building Phase
|
||||||
|
data = importdata()
|
||||||
|
X, Y, X_train, X_test, y_train, y_test = splitdataset(data)
|
||||||
|
clf_gini = train_using_gini(X_train, X_test, y_train)
|
||||||
|
clf_entropy = tarin_using_entropy(X_train, X_test, y_train)
|
||||||
|
|
||||||
|
# Operational Phase
|
||||||
|
print("Results Using Gini Index:")
|
||||||
|
|
||||||
|
# Prediction using gini
|
||||||
|
y_pred_gini = prediction(X_test, clf_gini)
|
||||||
|
cal_accuracy(y_test, y_pred_gini)
|
||||||
|
|
||||||
|
print("Results Using Entropy:")
|
||||||
|
# Prediction using entropy
|
||||||
|
y_pred_entropy = prediction(X_test, clf_entropy)
|
||||||
|
cal_accuracy(y_test, y_pred_entropy)
|
||||||
|
|
||||||
|
|
||||||
|
# Calling main function
|
||||||
|
if __name__=="__main__":
|
||||||
|
main()
|
|
@ -0,0 +1,103 @@
|
||||||
|
import numpy as np
|
||||||
|
import pandas as pd
|
||||||
|
from sklearn.metrics import confusion_matrix
|
||||||
|
from sklearn.model_selection import train_test_split
|
||||||
|
from sklearn.tree import DecisionTreeClassifier
|
||||||
|
from sklearn.metrics import accuracy_score
|
||||||
|
from sklearn.metrics import classification_report
|
||||||
|
|
||||||
|
# Function importing Dataset
|
||||||
|
def importdata():
|
||||||
|
balance_data = pd.read_excel('Train.xlsx', sheet_name="Sheet1").to_numpy()
|
||||||
|
|
||||||
|
# Printing the dataswet shape
|
||||||
|
print ("Dataset Length: ", len(balance_data))
|
||||||
|
print ("Dataset Shape: ", balance_data.shape)
|
||||||
|
|
||||||
|
# Printing the dataset obseravtions
|
||||||
|
print ("Dataset: ",balance_data.head())
|
||||||
|
return balance_data
|
||||||
|
|
||||||
|
# Function to split the dataset
|
||||||
|
def splitdataset(balance_data):
|
||||||
|
|
||||||
|
# Separating the target variable
|
||||||
|
X = balance_data.values[:, 1:5]
|
||||||
|
Y = balance_data.values[:, 0]
|
||||||
|
|
||||||
|
# Splitting the dataset into train and test
|
||||||
|
X_train, X_test, y_train, y_test = train_test_split(
|
||||||
|
X, Y, test_size = 0.3, random_state = 100)
|
||||||
|
|
||||||
|
return X, Y, X_train, X_test, y_train, y_test
|
||||||
|
|
||||||
|
# Function to perform training with giniIndex.
|
||||||
|
def train_using_gini(X_train, X_test, y_train):
|
||||||
|
|
||||||
|
# Creating the classifier object
|
||||||
|
clf_gini = DecisionTreeClassifier(criterion = "gini",
|
||||||
|
random_state = 100,max_depth=3, min_samples_leaf=5)
|
||||||
|
|
||||||
|
# Performing training
|
||||||
|
clf_gini.fit(X_train, y_train)
|
||||||
|
return clf_gini
|
||||||
|
|
||||||
|
# Function to perform training with entropy.
|
||||||
|
def tarin_using_entropy(X_train, X_test, y_train):
|
||||||
|
|
||||||
|
# Decision tree with entropy
|
||||||
|
clf_entropy = DecisionTreeClassifier(
|
||||||
|
criterion = "entropy", random_state = 100,
|
||||||
|
max_depth = 3, min_samples_leaf = 5)
|
||||||
|
|
||||||
|
# Performing training
|
||||||
|
clf_entropy.fit(X_train, y_train)
|
||||||
|
return clf_entropy
|
||||||
|
|
||||||
|
|
||||||
|
# Function to make predictions
|
||||||
|
def prediction(X_test, clf_object):
|
||||||
|
|
||||||
|
# Predicton on test with giniIndex
|
||||||
|
y_pred = clf_object.predict(X_test)
|
||||||
|
print("Predicted values:")
|
||||||
|
print(y_pred)
|
||||||
|
return y_pred
|
||||||
|
|
||||||
|
# Function to calculate accuracy
|
||||||
|
def cal_accuracy(y_test, y_pred):
|
||||||
|
|
||||||
|
print("Confusion Matrix: ",
|
||||||
|
confusion_matrix(y_test, y_pred))
|
||||||
|
|
||||||
|
print ("Accuracy : ",
|
||||||
|
accuracy_score(y_test,y_pred)*100)
|
||||||
|
|
||||||
|
print("Report : ",
|
||||||
|
classification_report(y_test, y_pred))
|
||||||
|
|
||||||
|
# Driver code
|
||||||
|
def main():
|
||||||
|
|
||||||
|
# Building Phase
|
||||||
|
data = importdata()
|
||||||
|
X, Y, X_train, X_test, y_train, y_test = splitdataset(data)
|
||||||
|
clf_gini = train_using_gini(X_train, X_test, y_train)
|
||||||
|
clf_entropy = tarin_using_entropy(X_train, X_test, y_train)
|
||||||
|
|
||||||
|
# Operational Phase
|
||||||
|
print("Results Using Gini Index:")
|
||||||
|
|
||||||
|
# Prediction using gini
|
||||||
|
y_pred_gini = prediction(X_test, clf_gini)
|
||||||
|
cal_accuracy(y_test, y_pred_gini)
|
||||||
|
|
||||||
|
print("Results Using Entropy:")
|
||||||
|
# Prediction using entropy
|
||||||
|
y_pred_entropy = prediction(X_test, clf_entropy)
|
||||||
|
cal_accuracy(y_test, y_pred_entropy)
|
||||||
|
|
||||||
|
|
||||||
|
# Calling main function
|
||||||
|
if __name__=="__main__":
|
||||||
|
main()
|
|
@ -0,0 +1,96 @@
|
||||||
|
import numpy as np
|
||||||
|
import pandas as pd
|
||||||
|
from sklearn.metrics import confusion_matrix
|
||||||
|
from sklearn.model_selection import train_test_split
|
||||||
|
from sklearn.tree import DecisionTreeClassifier
|
||||||
|
from sklearn.metrics import accuracy_score
|
||||||
|
from sklearn.metrics import classification_report
|
||||||
|
|
||||||
|
# Function importing Dataset
|
||||||
|
def importdata():
|
||||||
|
balance_data = pd.read_excel('Train.xlsx', sheet_name="Sheet1").to_numpy()
|
||||||
|
return balance_data
|
||||||
|
|
||||||
|
# Function to split the dataset
|
||||||
|
def splitdataset(balance_data):
|
||||||
|
|
||||||
|
# Separating the target variable
|
||||||
|
X = balance_data.values[:, 1:5]
|
||||||
|
Y = balance_data.values[:, 0]
|
||||||
|
|
||||||
|
# Splitting the dataset into train and test
|
||||||
|
X_train, X_test, y_train, y_test = train_test_split(
|
||||||
|
X, Y, test_size = 0.3, random_state = 100)
|
||||||
|
|
||||||
|
return X, Y, X_train, X_test, y_train, y_test
|
||||||
|
|
||||||
|
# Function to perform training with giniIndex.
|
||||||
|
def train_using_gini(X_train, X_test, y_train):
|
||||||
|
|
||||||
|
# Creating the classifier object
|
||||||
|
clf_gini = DecisionTreeClassifier(criterion = "gini",
|
||||||
|
random_state = 100,max_depth=3, min_samples_leaf=5)
|
||||||
|
|
||||||
|
# Performing training
|
||||||
|
clf_gini.fit(X_train, y_train)
|
||||||
|
return clf_gini
|
||||||
|
|
||||||
|
# Function to perform training with entropy.
|
||||||
|
def tarin_using_entropy(X_train, X_test, y_train):
|
||||||
|
|
||||||
|
# Decision tree with entropy
|
||||||
|
clf_entropy = DecisionTreeClassifier(
|
||||||
|
criterion = "entropy", random_state = 100,
|
||||||
|
max_depth = 3, min_samples_leaf = 5)
|
||||||
|
|
||||||
|
# Performing training
|
||||||
|
clf_entropy.fit(X_train, y_train)
|
||||||
|
return clf_entropy
|
||||||
|
|
||||||
|
|
||||||
|
# Function to make predictions
|
||||||
|
def prediction(X_test, clf_object):
|
||||||
|
|
||||||
|
# Predicton on test with giniIndex
|
||||||
|
y_pred = clf_object.predict(X_test)
|
||||||
|
print("Predicted values:")
|
||||||
|
print(y_pred)
|
||||||
|
return y_pred
|
||||||
|
|
||||||
|
# Function to calculate accuracy
|
||||||
|
def cal_accuracy(y_test, y_pred):
|
||||||
|
|
||||||
|
print("Confusion Matrix: ",
|
||||||
|
confusion_matrix(y_test, y_pred))
|
||||||
|
|
||||||
|
print ("Accuracy : ",
|
||||||
|
accuracy_score(y_test,y_pred)*100)
|
||||||
|
|
||||||
|
print("Report : ",
|
||||||
|
classification_report(y_test, y_pred))
|
||||||
|
|
||||||
|
# Driver code
|
||||||
|
def main():
|
||||||
|
|
||||||
|
# Building Phase
|
||||||
|
data = importdata()
|
||||||
|
X, Y, X_train, X_test, y_train, y_test = splitdataset(data)
|
||||||
|
clf_gini = train_using_gini(X_train, X_test, y_train)
|
||||||
|
clf_entropy = tarin_using_entropy(X_train, X_test, y_train)
|
||||||
|
|
||||||
|
# Operational Phase
|
||||||
|
print("Results Using Gini Index:")
|
||||||
|
|
||||||
|
# Prediction using gini
|
||||||
|
y_pred_gini = prediction(X_test, clf_gini)
|
||||||
|
cal_accuracy(y_test, y_pred_gini)
|
||||||
|
|
||||||
|
print("Results Using Entropy:")
|
||||||
|
# Prediction using entropy
|
||||||
|
y_pred_entropy = prediction(X_test, clf_entropy)
|
||||||
|
cal_accuracy(y_test, y_pred_entropy)
|
||||||
|
|
||||||
|
|
||||||
|
# Calling main function
|
||||||
|
if __name__=="__main__":
|
||||||
|
main()
|
|
@ -0,0 +1,96 @@
|
||||||
|
import numpy as np
|
||||||
|
import pandas as pd
|
||||||
|
from sklearn.metrics import confusion_matrix
|
||||||
|
from sklearn.model_selection import train_test_split
|
||||||
|
from sklearn.tree import DecisionTreeClassifier
|
||||||
|
from sklearn.metrics import accuracy_score
|
||||||
|
from sklearn.metrics import classification_report
|
||||||
|
|
||||||
|
# Function importing Dataset
|
||||||
|
def importdata():
|
||||||
|
dataset = pd.read_excel('Train.xlsx', sheet_name="Sheet1").to_numpy()
|
||||||
|
return dataset
|
||||||
|
|
||||||
|
# Function to split the dataset
|
||||||
|
def splitdataset(dataset):
|
||||||
|
|
||||||
|
# Separating the target variable
|
||||||
|
X = dataset.values[:, 1:5]
|
||||||
|
Y = dataset.values[:, 0]
|
||||||
|
|
||||||
|
# Splitting the dataset into train and test
|
||||||
|
X_train, X_test, y_train, y_test = train_test_split(
|
||||||
|
X, Y, test_size = 0.3, random_state = 100)
|
||||||
|
|
||||||
|
return X, Y, X_train, X_test, y_train, y_test
|
||||||
|
|
||||||
|
# Function to perform training with giniIndex.
|
||||||
|
def train_using_gini(X_train, X_test, y_train):
|
||||||
|
|
||||||
|
# Creating the classifier object
|
||||||
|
clf_gini = DecisionTreeClassifier(criterion = "gini",
|
||||||
|
random_state = 100,max_depth=3, min_samples_leaf=5)
|
||||||
|
|
||||||
|
# Performing training
|
||||||
|
clf_gini.fit(X_train, y_train)
|
||||||
|
return clf_gini
|
||||||
|
|
||||||
|
# Function to perform training with entropy.
|
||||||
|
def tarin_using_entropy(X_train, X_test, y_train):
|
||||||
|
|
||||||
|
# Decision tree with entropy
|
||||||
|
clf_entropy = DecisionTreeClassifier(
|
||||||
|
criterion = "entropy", random_state = 100,
|
||||||
|
max_depth = 3, min_samples_leaf = 5)
|
||||||
|
|
||||||
|
# Performing training
|
||||||
|
clf_entropy.fit(X_train, y_train)
|
||||||
|
return clf_entropy
|
||||||
|
|
||||||
|
|
||||||
|
# Function to make predictions
|
||||||
|
def prediction(X_test, clf_object):
|
||||||
|
|
||||||
|
# Predicton on test with giniIndex
|
||||||
|
y_pred = clf_object.predict(X_test)
|
||||||
|
print("Predicted values:")
|
||||||
|
print(y_pred)
|
||||||
|
return y_pred
|
||||||
|
|
||||||
|
# Function to calculate accuracy
|
||||||
|
def cal_accuracy(y_test, y_pred):
|
||||||
|
|
||||||
|
print("Confusion Matrix: ",
|
||||||
|
confusion_matrix(y_test, y_pred))
|
||||||
|
|
||||||
|
print ("Accuracy : ",
|
||||||
|
accuracy_score(y_test,y_pred)*100)
|
||||||
|
|
||||||
|
print("Report : ",
|
||||||
|
classification_report(y_test, y_pred))
|
||||||
|
|
||||||
|
# Driver code
|
||||||
|
def main():
|
||||||
|
|
||||||
|
# Building Phase
|
||||||
|
data = importdata()
|
||||||
|
X, Y, X_train, X_test, y_train, y_test = splitdataset(data)
|
||||||
|
clf_gini = train_using_gini(X_train, X_test, y_train)
|
||||||
|
clf_entropy = tarin_using_entropy(X_train, X_test, y_train)
|
||||||
|
|
||||||
|
# Operational Phase
|
||||||
|
print("Results Using Gini Index:")
|
||||||
|
|
||||||
|
# Prediction using gini
|
||||||
|
y_pred_gini = prediction(X_test, clf_gini)
|
||||||
|
cal_accuracy(y_test, y_pred_gini)
|
||||||
|
|
||||||
|
print("Results Using Entropy:")
|
||||||
|
# Prediction using entropy
|
||||||
|
y_pred_entropy = prediction(X_test, clf_entropy)
|
||||||
|
cal_accuracy(y_test, y_pred_entropy)
|
||||||
|
|
||||||
|
|
||||||
|
# Calling main function
|
||||||
|
if __name__=="__main__":
|
||||||
|
main()
|
|
@ -0,0 +1,96 @@
|
||||||
|
import numpy as np
|
||||||
|
import pandas as pd
|
||||||
|
from sklearn.metrics import confusion_matrix
|
||||||
|
from sklearn.model_selection import train_test_split
|
||||||
|
from sklearn.tree import DecisionTreeClassifier
|
||||||
|
from sklearn.metrics import accuracy_score
|
||||||
|
from sklearn.metrics import classification_report
|
||||||
|
|
||||||
|
# Function importing Dataset
|
||||||
|
def importdata():
|
||||||
|
balance_data = pd.read_csv( 'Train.csv',sep= ',', header = None)
|
||||||
|
return dataset
|
||||||
|
|
||||||
|
# Function to split the dataset
|
||||||
|
def splitdataset(dataset):
|
||||||
|
|
||||||
|
# Separating the target variable
|
||||||
|
X = dataset.values[:, 1:5]
|
||||||
|
Y = dataset.values[:, 0]
|
||||||
|
|
||||||
|
# Splitting the dataset into train and test
|
||||||
|
X_train, X_test, y_train, y_test = train_test_split(
|
||||||
|
X, Y, test_size = 0.3, random_state = 100)
|
||||||
|
|
||||||
|
return X, Y, X_train, X_test, y_train, y_test
|
||||||
|
|
||||||
|
# Function to perform training with giniIndex.
|
||||||
|
def train_using_gini(X_train, X_test, y_train):
|
||||||
|
|
||||||
|
# Creating the classifier object
|
||||||
|
clf_gini = DecisionTreeClassifier(criterion = "gini",
|
||||||
|
random_state = 100,max_depth=3, min_samples_leaf=5)
|
||||||
|
|
||||||
|
# Performing training
|
||||||
|
clf_gini.fit(X_train, y_train)
|
||||||
|
return clf_gini
|
||||||
|
|
||||||
|
# Function to perform training with entropy.
|
||||||
|
def tarin_using_entropy(X_train, X_test, y_train):
|
||||||
|
|
||||||
|
# Decision tree with entropy
|
||||||
|
clf_entropy = DecisionTreeClassifier(
|
||||||
|
criterion = "entropy", random_state = 100,
|
||||||
|
max_depth = 3, min_samples_leaf = 5)
|
||||||
|
|
||||||
|
# Performing training
|
||||||
|
clf_entropy.fit(X_train, y_train)
|
||||||
|
return clf_entropy
|
||||||
|
|
||||||
|
|
||||||
|
# Function to make predictions
|
||||||
|
def prediction(X_test, clf_object):
|
||||||
|
|
||||||
|
# Predicton on test with giniIndex
|
||||||
|
y_pred = clf_object.predict(X_test)
|
||||||
|
print("Predicted values:")
|
||||||
|
print(y_pred)
|
||||||
|
return y_pred
|
||||||
|
|
||||||
|
# Function to calculate accuracy
|
||||||
|
def cal_accuracy(y_test, y_pred):
|
||||||
|
|
||||||
|
print("Confusion Matrix: ",
|
||||||
|
confusion_matrix(y_test, y_pred))
|
||||||
|
|
||||||
|
print ("Accuracy : ",
|
||||||
|
accuracy_score(y_test,y_pred)*100)
|
||||||
|
|
||||||
|
print("Report : ",
|
||||||
|
classification_report(y_test, y_pred))
|
||||||
|
|
||||||
|
# Driver code
|
||||||
|
def main():
|
||||||
|
|
||||||
|
# Building Phase
|
||||||
|
data = importdata()
|
||||||
|
X, Y, X_train, X_test, y_train, y_test = splitdataset(data)
|
||||||
|
clf_gini = train_using_gini(X_train, X_test, y_train)
|
||||||
|
clf_entropy = tarin_using_entropy(X_train, X_test, y_train)
|
||||||
|
|
||||||
|
# Operational Phase
|
||||||
|
print("Results Using Gini Index:")
|
||||||
|
|
||||||
|
# Prediction using gini
|
||||||
|
y_pred_gini = prediction(X_test, clf_gini)
|
||||||
|
cal_accuracy(y_test, y_pred_gini)
|
||||||
|
|
||||||
|
print("Results Using Entropy:")
|
||||||
|
# Prediction using entropy
|
||||||
|
y_pred_entropy = prediction(X_test, clf_entropy)
|
||||||
|
cal_accuracy(y_test, y_pred_entropy)
|
||||||
|
|
||||||
|
|
||||||
|
# Calling main function
|
||||||
|
if __name__=="__main__":
|
||||||
|
main()
|
|
@ -0,0 +1,96 @@
|
||||||
|
import numpy as np
|
||||||
|
import pandas as pd
|
||||||
|
from sklearn.metrics import confusion_matrix
|
||||||
|
from sklearn.model_selection import train_test_split
|
||||||
|
from sklearn.tree import DecisionTreeClassifier
|
||||||
|
from sklearn.metrics import accuracy_score
|
||||||
|
from sklearn.metrics import classification_report
|
||||||
|
|
||||||
|
# Function importing Dataset
|
||||||
|
def importdata():
|
||||||
|
dataset = pd.read_csv( 'Train.csv',sep= ',', header = None)
|
||||||
|
return dataset
|
||||||
|
|
||||||
|
# Function to split the dataset
|
||||||
|
def splitdataset(dataset):
|
||||||
|
|
||||||
|
# Separating the target variable
|
||||||
|
X = dataset.values[:, 1:5]
|
||||||
|
Y = dataset.values[:, 0]
|
||||||
|
|
||||||
|
# Splitting the dataset into train and test
|
||||||
|
X_train, X_test, y_train, y_test = train_test_split(
|
||||||
|
X, Y, test_size = 0.3, random_state = 100)
|
||||||
|
|
||||||
|
return X, Y, X_train, X_test, y_train, y_test
|
||||||
|
|
||||||
|
# Function to perform training with giniIndex.
|
||||||
|
def train_using_gini(X_train, X_test, y_train):
|
||||||
|
|
||||||
|
# Creating the classifier object
|
||||||
|
clf_gini = DecisionTreeClassifier(criterion = "gini",
|
||||||
|
random_state = 100,max_depth=3, min_samples_leaf=5)
|
||||||
|
|
||||||
|
# Performing training
|
||||||
|
clf_gini.fit(X_train, y_train)
|
||||||
|
return clf_gini
|
||||||
|
|
||||||
|
# Function to perform training with entropy.
|
||||||
|
def tarin_using_entropy(X_train, X_test, y_train):
|
||||||
|
|
||||||
|
# Decision tree with entropy
|
||||||
|
clf_entropy = DecisionTreeClassifier(
|
||||||
|
criterion = "entropy", random_state = 100,
|
||||||
|
max_depth = 3, min_samples_leaf = 5)
|
||||||
|
|
||||||
|
# Performing training
|
||||||
|
clf_entropy.fit(X_train, y_train)
|
||||||
|
return clf_entropy
|
||||||
|
|
||||||
|
|
||||||
|
# Function to make predictions
|
||||||
|
def prediction(X_test, clf_object):
|
||||||
|
|
||||||
|
# Predicton on test with giniIndex
|
||||||
|
y_pred = clf_object.predict(X_test)
|
||||||
|
print("Predicted values:")
|
||||||
|
print(y_pred)
|
||||||
|
return y_pred
|
||||||
|
|
||||||
|
# Function to calculate accuracy
|
||||||
|
def cal_accuracy(y_test, y_pred):
|
||||||
|
|
||||||
|
print("Confusion Matrix: ",
|
||||||
|
confusion_matrix(y_test, y_pred))
|
||||||
|
|
||||||
|
print ("Accuracy : ",
|
||||||
|
accuracy_score(y_test,y_pred)*100)
|
||||||
|
|
||||||
|
print("Report : ",
|
||||||
|
classification_report(y_test, y_pred))
|
||||||
|
|
||||||
|
# Driver code
|
||||||
|
def main():
|
||||||
|
|
||||||
|
# Building Phase
|
||||||
|
data = importdata()
|
||||||
|
X, Y, X_train, X_test, y_train, y_test = splitdataset(data)
|
||||||
|
clf_gini = train_using_gini(X_train, X_test, y_train)
|
||||||
|
clf_entropy = tarin_using_entropy(X_train, X_test, y_train)
|
||||||
|
|
||||||
|
# Operational Phase
|
||||||
|
print("Results Using Gini Index:")
|
||||||
|
|
||||||
|
# Prediction using gini
|
||||||
|
y_pred_gini = prediction(X_test, clf_gini)
|
||||||
|
cal_accuracy(y_test, y_pred_gini)
|
||||||
|
|
||||||
|
print("Results Using Entropy:")
|
||||||
|
# Prediction using entropy
|
||||||
|
y_pred_entropy = prediction(X_test, clf_entropy)
|
||||||
|
cal_accuracy(y_test, y_pred_entropy)
|
||||||
|
|
||||||
|
|
||||||
|
# Calling main function
|
||||||
|
if __name__=="__main__":
|
||||||
|
main()
|
|
@ -0,0 +1,3 @@
|
||||||
|
{
|
||||||
|
"python.pythonPath": "C:\\Users\\user\\AppData\\Local\\Programs\\Python\\Python38-32\\python.exe"
|
||||||
|
}
|
|
@ -0,0 +1,300 @@
|
||||||
|
-1,1,-1,1,1,1,-1,-1,-1,1,0,1,1,1,-1,1,1
|
||||||
|
-1,1,-1,1,1,1,-1,-1,-1,-1,-1,1,1,1,-1,0,1
|
||||||
|
0,1,1,0,1,1,-1,-1,-1,-1,1,-1,1,1,-1,-1,2
|
||||||
|
-1,1,1,-1,0,1,-1,-1,-1,-1,1,-1,1,-1,-1,1,2
|
||||||
|
1,1,1,-1,1,1,-1,-1,-1,-1,1,0,1,1,1,1,2
|
||||||
|
-1,1,1,-1,1,1,-1,-1,-1,-1,-1,-1,1,1,1,1,2
|
||||||
|
-1,1,-1,1,1,1,-1,-1,-1,-1,-1,-1,0,1,1,1,2
|
||||||
|
-1,1,-1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,0,1,1
|
||||||
|
-1,1,-1,1,1,1,-1,-1,-1,-1,-1,1,1,1,-1,1,1
|
||||||
|
1,1,1,-1,-1,-1,1,1,1,-1,-1,-1,-1,-1,0,0,2
|
||||||
|
-1,1,-1,1,1,-1,-1,-1,-1,-1,0,0,1,1,-1,-1,1
|
||||||
|
-1,1,-1,1,1,1,-1,-1,-1,-1,1,0,1,1,0,0,1
|
||||||
|
-1,1,1,-1,-1,-1,1,1,1,-1,-1,-1,1,-1,0,0,2
|
||||||
|
1,1,1,-1,-1,1,1,1,0,1,1,0,-1,-1,1,0,2
|
||||||
|
-1,1,-1,1,1,1,-1,-1,-1,-1,-1,1,0,0,-1,0,1
|
||||||
|
-1,1,-1,1,1,1,-1,-1,-1,1,-1,1,1,0,-1,0,1
|
||||||
|
1,-1,1,-1,-1,1,-1,1,0,1,1,1,0,-1,-1,1,2
|
||||||
|
1,0,1,-1,-1,-1,1,1,1,-1,-1,-1,1,-1,1,1,2
|
||||||
|
-1,1,-1,1,1,1,-1,-1,-1,-1,-1,0,1,1,-1,-1,1
|
||||||
|
1,1,1,-1,-1,-1,1,1,1,-1,1,-1,-1,-1,1,1,2
|
||||||
|
1,1,1,-1,-1,0,1,1,-1,-1,1,-1,-1,-1,1,1,2
|
||||||
|
1,1,1,-1,-1,-1,1,1,1,-1,-1,-1,0,0,1,1,2
|
||||||
|
1,0,1,-1,-1,-1,1,1,1,-1,-1,0,-1,-1,1,1,2
|
||||||
|
1,1,1,-1,-1,-1,1,1,1,-1,-1,-1,-1,-1,1,1,2
|
||||||
|
1,-1,1,-1,-1,-1,1,1,1,-1,-1,-1,-1,-1,1,0,2
|
||||||
|
1,-1,1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,2
|
||||||
|
1,-1,1,-1,-1,-1,1,1,1,-1,1,-1,-1,-1,1,1,2
|
||||||
|
1,1,1,-1,-1,-1,1,1,1,-1,1,-1,-1,-1,1,1,2
|
||||||
|
1,-1,-1,1,1,-1,1,1,1,-1,-1,1,1,1,-1,1,1
|
||||||
|
1,1,1,-1,-1,-1,1,1,1,-1,1,-1,-1,-1,1,1,2
|
||||||
|
-1,1,-1,1,1,1,-1,-1,-1,-1,-1,1,1,1,-1,-1,1
|
||||||
|
1,1,1,-1,-1,-1,1,1,1,-1,1,-1,-1,-1,1,0,2
|
||||||
|
1,1,1,-1,-1,-1,1,1,1,1,-1,-1,1,-1,1,1,2
|
||||||
|
-1,1,-1,1,1,1,-1,-1,-1,-1,-1,1,1,1,-1,1,1
|
||||||
|
1,1,1,-1,-1,-1,1,1,1,-1,-1,-1,-1,-1,1,1,2
|
||||||
|
-1,1,-1,1,1,1,-1,-1,-1,-1,-1,1,1,1,-1,-1,1
|
||||||
|
1,0,-1,1,1,1,-1,-1,-1,1,-1,1,0,1,-1,1,1
|
||||||
|
1,1,-1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,-1,1,1
|
||||||
|
-1,1,-1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,-1,1
|
||||||
|
1,-1,1,-1,-1,-1,1,1,1,1,1,-1,1,-1,1,1,2
|
||||||
|
1,1,1,-1,-1,-1,1,1,1,-1,0,-1,-1,-1,-1,0,2
|
||||||
|
1,1,1,-1,-1,-1,1,1,1,-1,-1,-1,-1,-1,1,0,2
|
||||||
|
1,-1,1,-1,-1,-1,1,1,1,-1,-1,-1,-1,-1,-1,1,2
|
||||||
|
1,-1,1,-1,-1,-1,1,1,1,-1,-1,-1,-1,-1,1,1,2
|
||||||
|
1,1,1,-1,-1,-1,1,1,1,-1,1,-1,-1,-1,-1,0,2
|
||||||
|
1,1,1,-1,-1,-1,1,1,0,-1,1,-1,-1,-1,1,0,2
|
||||||
|
1,1,1,-1,-1,-1,1,1,1,-1,-1,-1,-1,-1,-1,1,2
|
||||||
|
1,-1,1,-1,-1,-1,1,1,0,-1,-1,-1,-1,-1,-1,0,2
|
||||||
|
1,1,1,-1,-1,-1,1,1,-1,-1,-1,-1,-1,1,-1,1,2
|
||||||
|
-1,0,-1,1,1,1,-1,-1,-1,-1,-1,1,1,1,-1,-1,1
|
||||||
|
1,1,1,-1,-1,-1,1,1,1,-1,1,-1,-1,-1,1,1,2
|
||||||
|
-1,1,-1,1,1,1,-1,0,-1,-1,-1,1,1,1,-1,1,1
|
||||||
|
1,1,1,-1,-1,-1,1,1,1,-1,-1,-1,-1,-1,0,0,2
|
||||||
|
1,1,-1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,-1,1
|
||||||
|
1,1,1,-1,-1,1,0,1,-1,-1,1,1,-1,1,-1,0,2
|
||||||
|
-1,1,-1,1,1,1,-1,-1,-1,1,1,1,1,1,-1,-1,1
|
||||||
|
-1,1,-1,1,1,1,-1,-1,-1,1,1,1,1,1,-1,1,1
|
||||||
|
-1,1,-1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,1,1
|
||||||
|
-1,1,-1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,1,1
|
||||||
|
-1,1,-1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,0,1
|
||||||
|
1,1,1,-1,-1,0,1,1,1,1,-1,-1,-1,-1,1,0,2
|
||||||
|
-1,1,-1,1,1,1,-1,-1,-1,-1,-1,1,1,1,-1,-1,1
|
||||||
|
1,1,1,-1,-1,-1,1,1,1,-1,-1,-1,-1,-1,-1,0,2
|
||||||
|
1,1,1,-1,-1,-1,1,1,1,-1,1,-1,-1,-1,-1,1,2
|
||||||
|
1,1,1,-1,-1,-1,1,1,1,-1,1,0,-1,-1,-1,1,2
|
||||||
|
1,1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,-1,1,1
|
||||||
|
-1,1,-1,1,1,1,1,-1,-1,-1,1,1,1,1,-1,1,1
|
||||||
|
-1,1,-1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,-1,1
|
||||||
|
1,0,1,-1,-1,-1,1,1,1,-1,-1,-1,1,-1,1,1,2
|
||||||
|
1,1,1,-1,-1,-1,1,1,1,-1,-1,-1,-1,-1,1,1,2
|
||||||
|
1,-1,1,-1,-1,-1,1,1,1,-1,-1,-1,1,-1,1,0,2
|
||||||
|
1,1,1,1,-1,-1,1,1,1,1,1,-1,-1,1,-1,1,1
|
||||||
|
1,1,1,-1,-1,-1,1,1,1,-1,1,-1,-1,-1,1,0,2
|
||||||
|
1,-1,1,1,1,-1,1,-1,1,1,-1,-1,1,1,-1,1,1
|
||||||
|
1,-1,1,-1,-1,1,1,1,1,1,1,-1,-1,1,1,1,2
|
||||||
|
-1,1,1,1,1,1,-1,-1,-1,1,1,-1,1,1,-1,-1,2
|
||||||
|
-1,1,1,-1,1,1,-1,-1,-1,1,1,1,1,1,-1,0,2
|
||||||
|
-1,1,1,1,1,1,-1,1,1,1,1,1,1,1,-1,1,2
|
||||||
|
1,1,1,-1,1,1,-1,-1,-1,1,1,-1,1,1,-1,1,2
|
||||||
|
-1,-1,-1,1,1,-1,-1,-1,-1,1,-1,1,1,1,-1,-1,1
|
||||||
|
1,-1,1,-1,-1,1,1,1,1,1,-1,1,-1,1,-1,0,2
|
||||||
|
1,-1,1,-1,-1,-1,1,1,0,1,1,1,-1,1,-1,1,2
|
||||||
|
-1,-1,-1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,1,1
|
||||||
|
-1,-1,-1,1,1,1,-1,-1,-1,-1,-1,1,1,1,-1,-1,1
|
||||||
|
-1,0,-1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,-1,1
|
||||||
|
-1,-1,1,-1,1,1,-1,-1,-1,1,1,1,1,1,-1,1,2
|
||||||
|
-1,-1,-1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,-1,1
|
||||||
|
-1,-1,-1,1,1,1,-1,-1,-1,-1,-1,1,1,1,-1,-1,1
|
||||||
|
-1,1,1,-1,1,1,1,-1,1,1,1,-1,1,1,-1,1,2
|
||||||
|
-1,-1,-1,1,1,1,-1,-1,-1,1,-1,0,1,1,-1,0,1
|
||||||
|
1,-1,1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,2
|
||||||
|
1,-1,1,-1,-1,-1,1,1,1,1,1,-1,-1,-1,1,1,2
|
||||||
|
1,1,1,-1,-1,-1,1,1,-1,1,1,-1,-1,0,1,1,2
|
||||||
|
1,-1,1,-1,-1,-1,1,-1,1,1,1,-1,-1,-1,1,1,2
|
||||||
|
1,-1,1,-1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,2
|
||||||
|
1,-1,1,-1,1,1,-1,0,0,-1,1,0,0,0,1,1,2
|
||||||
|
-1,-1,0,-1,1,1,-1,-1,-1,-1,1,1,1,1,-1,1,2
|
||||||
|
1,-1,-1,-1,1,1,1,-1,-1,1,1,-1,-1,1,-1,1,2
|
||||||
|
1,1,1,-1,-1,1,1,1,1,1,-1,-1,-1,-1,-1,1,2
|
||||||
|
-1,-1,-1,1,1,1,-1,-1,-1,1,0,1,1,1,-1,-1,1
|
||||||
|
1,-1,-1,-1,1,1,-1,-1,-1,-1,1,1,-1,1,-1,1,2
|
||||||
|
1,-1,1,-1,1,1,1,-1,-1,-1,1,-1,-1,1,-1,1,2
|
||||||
|
1,-1,1,-1,1,1,1,-1,0,-1,1,-1,1,1,1,0,2
|
||||||
|
1,-1,-1,-1,1,1,0,-1,0,-1,-1,-1,-1,1,0,-1,2
|
||||||
|
0,0,0,0,-1,1,1,1,1,1,0,-1,1,1,-1,0,2
|
||||||
|
1,1,1,-1,-1,-1,-1,1,1,-1,1,-1,-1,-1,1,1,2
|
||||||
|
-1,1,-1,1,1,1,-1,-1,-1,-1,-1,1,1,1,-1,1,1
|
||||||
|
-1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1
|
||||||
|
1,0,1,-1,-1,-1,1,1,1,-1,-1,-1,-1,-1,1,0,2
|
||||||
|
1,0,1,-1,-1,-1,1,1,1,-1,-1,-1,-1,-1,1,0,2
|
||||||
|
-1,-1,1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,2
|
||||||
|
-1,0,-1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,1,1
|
||||||
|
-1,0,1,-1,-1,1,1,1,-1,1,-1,-1,-1,-1,1,0,2
|
||||||
|
-1,0,-1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,-1,1
|
||||||
|
1,0,1,-1,-1,-1,1,1,1,-1,-1,-1,-1,-1,1,0,2
|
||||||
|
-1,0,1,-1,0,0,1,1,1,1,0,0,-1,-1,1,1,2
|
||||||
|
1,-1,1,-1,-1,-1,1,1,1,-1,1,-1,-1,-1,1,1,2
|
||||||
|
1,1,1,1,1,-1,1,-1,-1,-1,-1,1,1,1,-1,1,1
|
||||||
|
-1,1,1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1,1,1,2
|
||||||
|
-1,-1,-1,1,1,1,-1,-1,-1,-1,-1,1,1,1,-1,-1,1
|
||||||
|
-1,0,0,1,1,1,-1,-1,-1,1,-1,1,1,1,0,1,1
|
||||||
|
-1,0,-1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,1,1
|
||||||
|
-1,-1,-1,1,1,1,-1,-1,-1,1,-1,1,-1,1,-1,1,1
|
||||||
|
1,0,-1,1,1,1,-1,1,-1,-1,-1,1,1,1,-1,1,1
|
||||||
|
-1,0,1,-1,-1,-1,1,1,1,-1,-1,-1,-1,-1,1,1,2
|
||||||
|
-1,0,-1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,1,1
|
||||||
|
-1,0,-1,1,1,1,-1,-1,-1,-1,-1,1,1,1,-1,-1,1
|
||||||
|
-1,0,1,-1,-1,-1,1,1,1,1,1,-1,-1,1,1,1,2
|
||||||
|
-1,0,1,-1,-1,1,-1,1,-1,1,1,-1,-1,-1,1,1,2
|
||||||
|
0,0,1,-1,-1,-1,1,1,0,-1,0,0,0,0,0,0,2
|
||||||
|
1,0,1,-1,0,0,1,1,1,-1,-1,-1,-1,-1,1,0,2
|
||||||
|
-1,-1,1,-1,-1,1,-1,1,1,1,-1,-1,-1,1,-1,1,2
|
||||||
|
-1,-1,-1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,0,1
|
||||||
|
-1,-1,-1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,1,1
|
||||||
|
-1,-1,-1,1,1,1,-1,-1,-1,-1,-1,1,1,1,-1,0,1
|
||||||
|
-1,-1,-1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,-1,1
|
||||||
|
-1,1,-1,1,1,1,-1,-1,-1,1,1,1,1,-1,-1,1,1
|
||||||
|
-1,0,1,-1,-1,1,1,1,1,1,-1,-1,-1,1,1,1,2
|
||||||
|
-1,-1,1,-1,-1,1,1,1,1,1,-1,-1,-1,1,-1,1,2
|
||||||
|
1,-1,1,-1,-1,1,1,1,1,-1,-1,-1,-1,-1,1,1,2
|
||||||
|
-1,-1,-1,1,-1,-1,1,1,1,1,-1,-1,1,1,-1,1,1
|
||||||
|
-1,-1,-1,1,1,1,1,1,1,1,-1,1,1,1,0,1,1
|
||||||
|
-1,-1,-1,1,1,1,1,1,1,1,-1,1,1,1,-1,1,1
|
||||||
|
0,1,-1,-1,-1,-1,1,1,1,1,1,-1,-1,1,1,1,2
|
||||||
|
-1,0,-1,-1,-1,1,1,1,1,1,-1,-1,-1,1,-1,0,2
|
||||||
|
-1,-1,1,-1,-1,1,1,1,1,1,-1,-1,-1,1,0,1,2
|
||||||
|
-1,1,-1,1,1,1,-1,-1,-1,-1,-1,1,1,1,-1,1,1
|
||||||
|
-1,-1,-1,-1,-1,-1,1,1,1,1,-1,1,1,1,1,1,2
|
||||||
|
-1,1,-1,1,1,1,-1,-1,-1,1,1,1,1,1,-1,1,1
|
||||||
|
-1,-1,1,-1,-1,-1,1,1,1,1,-1,-1,1,-1,1,1,2
|
||||||
|
1,1,-1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,1,1
|
||||||
|
1,1,0,1,1,1,-1,-1,1,-1,1,0,1,1,-1,-1,2
|
||||||
|
-1,1,1,-1,-1,1,-1,1,1,1,1,-1,1,-1,1,1,2
|
||||||
|
-1,-1,1,-1,-1,1,1,1,1,1,1,-1,1,1,-1,1,2
|
||||||
|
-1,1,-1,1,1,1,-1,-1,-1,-1,-1,1,1,1,-1,-1,1
|
||||||
|
1,1,-1,1,1,1,-1,0,-1,-1,1,1,1,1,-1,-1,1
|
||||||
|
1,1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,-1,-1,1
|
||||||
|
-1,1,1,-1,-1,1,-1,1,1,-1,1,-1,0,0,0,0,2
|
||||||
|
-1,1,-1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,-1,1
|
||||||
|
-1,1,1,-1,0,1,1,1,1,1,1,-1,-1,0,-1,0,2
|
||||||
|
-1,1,-1,-1,1,1,-1,-1,-1,-1,-1,1,1,1,1,1,2
|
||||||
|
-1,-1,-1,-1,1,1,1,-1,-1,-1,-1,1,1,1,-1,1,2
|
||||||
|
-1,1,1,-1,1,1,1,-1,-1,-1,1,1,1,1,-1,1,2
|
||||||
|
-1,1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,-1,1,1
|
||||||
|
1,1,-1,-1,1,1,-1,-1,-1,1,1,1,1,1,-1,0,2
|
||||||
|
-1,1,1,-1,-1,1,1,1,1,1,1,-1,1,-1,1,0,2
|
||||||
|
1,-1,1,1,1,1,1,1,-1,1,-1,1,-1,1,1,1,1
|
||||||
|
1,-1,1,1,1,1,1,1,-1,1,1,1,-1,1,1,1,1
|
||||||
|
-1,-1,1,1,1,1,-1,-1,1,-1,-1,-1,1,1,1,0,2
|
||||||
|
1,-1,1,-1,-1,-1,1,1,1,1,1,-1,-1,1,-1,1,2
|
||||||
|
1,-1,1,-1,-1,-1,0,1,1,0,-1,-1,-1,-1,1,0,2
|
||||||
|
-1,0,-1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,1,1
|
||||||
|
-1,1,1,-1,-1,-1,1,1,1,1,-1,-1,0,-1,1,1,2
|
||||||
|
-1,-1,-1,-1,1,1,-1,-1,-1,1,1,1,1,1,-1,1,2
|
||||||
|
1,0,1,-1,-1,-1,1,1,1,-1,-1,-1,-1,-1,1,0,2
|
||||||
|
-1,1,1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,2
|
||||||
|
-1,-1,1,1,-1,-1,1,1,1,1,-1,-1,-1,1,1,1,1
|
||||||
|
-1,-1,1,-1,-1,-1,1,1,1,1,1,0,-1,-1,1,1,2
|
||||||
|
0,-1,1,-1,-1,-1,1,1,1,1,1,0,-1,-1,1,0,2
|
||||||
|
1,-1,1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,2
|
||||||
|
0,0,1,-1,-1,-1,1,1,1,0,0,-1,-1,-1,0,0,2
|
||||||
|
-1,-1,1,-1,-1,-1,1,1,1,1,1,-1,-1,-1,1,1,2
|
||||||
|
1,0,1,-1,-1,-1,1,1,1,-1,-1,-1,-1,-1,1,1,2
|
||||||
|
0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,2
|
||||||
|
-1,-1,1,-1,-1,-1,1,1,1,1,1,-1,-1,-1,1,1,2
|
||||||
|
1,-1,1,-1,-1,-1,1,1,1,1,-1,0,-1,-1,1,1,2
|
||||||
|
-1,1,1,-1,-1,-1,1,1,1,1,1,-1,-1,-1,1,1,2
|
||||||
|
1,-1,1,-1,-1,-1,1,1,1,-1,-1,-1,-1,-1,1,0,2
|
||||||
|
1,0,-1,1,1,1,1,1,-1,-1,-1,1,0,1,0,0,1
|
||||||
|
1,-1,1,-1,-1,-1,1,1,1,-1,-1,-1,-1,-1,1,1,2
|
||||||
|
-1,0,-1,1,1,1,-1,-1,-1,-1,-1,1,1,1,-1,0,1
|
||||||
|
-1,1,-1,1,1,1,-1,0,-1,1,-1,1,1,1,-1,0,1
|
||||||
|
-1,-1,-1,-1,-1,1,1,1,1,-1,1,-1,-1,1,1,1,2
|
||||||
|
-1,-1,1,-1,-1,-1,1,1,1,-1,-1,-1,-1,-1,1,1,2
|
||||||
|
-1,-1,1,-1,-1,1,1,0,1,1,1,-1,-1,-1,1,1,2
|
||||||
|
-1,-1,-1,1,1,1,-1,-1,-1,-1,-1,1,1,1,-1,0,1
|
||||||
|
-1,-1,1,-1,-1,1,1,1,1,-1,1,1,-1,1,1,0,2
|
||||||
|
-1,0,1,1,1,1,-1,-1,-1,1,-1,-1,-1,1,-1,1,1
|
||||||
|
-1,-1,1,-1,-1,-1,1,1,1,1,1,-1,0,-1,1,0,2
|
||||||
|
1,1,-1,-1,-1,-1,1,1,0,-1,1,-1,-1,-1,1,0,2
|
||||||
|
-1,-1,1,-1,-1,-1,1,1,1,-1,-1,-1,-1,1,1,1,2
|
||||||
|
1,1,1,-1,-1,-1,1,1,1,-1,-1,-1,-1,-1,1,1,2
|
||||||
|
1,-1,1,-1,-1,1,1,1,1,1,1,-1,-1,-1,1,1,2
|
||||||
|
1,-1,1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,2
|
||||||
|
-1,-1,1,1,1,1,1,-1,-1,-1,-1,1,1,1,-1,1,1
|
||||||
|
-1,-1,1,-1,-1,1,1,1,1,1,-1,1,-1,-1,-1,1,2
|
||||||
|
-1,-1,-1,1,1,1,-1,-1,-1,1,-1,1,-1,1,-1,1,1
|
||||||
|
1,0,-1,1,1,1,1,-1,-1,1,-1,1,1,1,-1,1,1
|
||||||
|
-1,-1,1,-1,-1,-1,1,1,1,-1,-1,0,-1,-1,1,1,2
|
||||||
|
1,1,1,-1,-1,-1,1,1,1,1,1,-1,-1,-1,-1,1,2
|
||||||
|
-1,-1,1,-1,-1,1,1,1,1,-1,-1,-1,-1,-1,1,1,2
|
||||||
|
-1,1,-1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,1,1
|
||||||
|
-1,-1,1,-1,-1,-1,1,1,1,-1,1,-1,-1,-1,1,1,2
|
||||||
|
-1,1,1,-1,-1,1,-1,1,1,-1,1,-1,1,-1,1,1,2
|
||||||
|
1,1,-1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,1,1
|
||||||
|
-1,1,1,1,1,1,-1,-1,-1,1,1,1,1,1,1,0,2
|
||||||
|
1,1,1,-1,1,1,-1,-1,0,1,-1,-1,-1,1,1,0,2
|
||||||
|
-1,1,-1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,-1,1
|
||||||
|
1,0,1,-1,-1,-1,1,1,1,-1,0,-1,-1,-1,1,0,2
|
||||||
|
-1,1,1,-1,-1,-1,-1,1,1,-1,1,-1,-1,1,1,1,2
|
||||||
|
-1,-1,1,-1,-1,-1,1,1,1,-1,-1,-1,-1,-1,1,0,2
|
||||||
|
-1,1,1,-1,1,1,-1,-1,-1,-1,1,-1,-1,-1,1,0,2
|
||||||
|
1,-1,1,-1,-1,-1,1,1,1,-1,1,-1,-1,-1,1,0,2
|
||||||
|
-1,-1,-1,1,1,-1,-1,-1,-1,-1,-1,1,1,1,-1,1,1
|
||||||
|
-1,1,-1,1,1,1,-1,-1,-1,1,-1,0,1,1,-1,-1,1
|
||||||
|
-1,0,-1,1,1,1,-1,-1,-1,-1,-1,1,1,1,-1,1,1
|
||||||
|
-1,-1,1,-1,-1,1,1,1,1,-1,1,-1,-1,1,1,1,2
|
||||||
|
1,-1,1,-1,-1,-1,1,1,1,-1,-1,-1,-1,-1,0,1,2
|
||||||
|
-1,1,-1,1,1,1,-1,-1,-1,-1,-1,1,1,0,-1,1,1
|
||||||
|
-1,1,1,1,1,1,1,-1,1,1,-1,1,1,1,-1,1,1
|
||||||
|
-1,1,-1,1,1,1,-1,-1,-1,-1,-1,1,1,1,-1,1,1
|
||||||
|
-1,1,-1,1,1,1,-1,-1,1,1,-1,1,1,1,-1,1,1
|
||||||
|
-1,1,1,-1,-1,-1,1,1,-1,-1,1,-1,-1,-1,1,0,2
|
||||||
|
-1,1,-1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,1,1
|
||||||
|
-1,-1,1,-1,-1,1,1,1,1,1,-1,1,-1,1,1,0,2
|
||||||
|
-1,-1,-1,1,1,1,-1,-1,-1,1,-1,1,-1,1,-1,1,1
|
||||||
|
-1,-1,1,-1,-1,-1,1,1,1,-1,-1,-1,-1,-1,1,1,2
|
||||||
|
1,-1,1,-1,-1,1,1,1,-1,-1,-1,1,1,-1,-1,1,2
|
||||||
|
1,1,1,-1,-1,-1,1,1,0,1,-1,-1,-1,-1,1,0,2
|
||||||
|
-1,-1,-1,1,1,1,1,-1,-1,1,-1,-1,-1,1,1,1,1
|
||||||
|
-1,-1,-1,1,-1,1,1,0,1,-1,-1,1,1,1,-1,1,1
|
||||||
|
1,-1,1,-1,-1,-1,1,1,1,1,1,-1,-1,1,1,1,2
|
||||||
|
-1,-1,-1,-1,1,1,1,-1,-1,-1,-1,0,-1,1,1,1,1
|
||||||
|
-1,1,1,-1,-1,-1,1,1,0,1,-1,-1,1,-1,1,1,2
|
||||||
|
1,-1,1,-1,-1,-1,-1,1,1,1,-1,-1,-1,-1,1,1,2
|
||||||
|
1,-1,1,-1,-1,-1,1,1,1,1,1,-1,-1,-1,1,1,2
|
||||||
|
-1,-1,1,-1,1,-1,1,1,1,-1,-1,-1,-1,1,0,1,2
|
||||||
|
-1,1,-1,1,1,1,0,-1,-1,-1,-1,0,1,1,-1,-1,1
|
||||||
|
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1
|
||||||
|
1,-1,1,-1,-1,-1,1,1,0,-1,1,-1,-1,-1,1,1,2
|
||||||
|
-1,1,-1,1,1,1,-1,-1,-1,-1,-1,1,1,1,-1,-1,1
|
||||||
|
-1,1,-1,1,1,1,-1,-1,-1,-1,-1,1,1,1,-1,-1,1
|
||||||
|
1,1,1,-1,-1,1,1,1,1,-1,-1,-1,-1,-1,1,1,2
|
||||||
|
-1,1,-1,1,1,1,-1,-1,-1,-1,-1,1,1,1,-1,1,1
|
||||||
|
1,-1,1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,-1,1,2
|
||||||
|
1,-1,1,-1,-1,-1,1,1,1,1,-1,-1,-1,1,1,1,2
|
||||||
|
-1,-1,-1,1,1,-1,-1,-1,-1,-1,-1,1,-1,1,-1,-1,1
|
||||||
|
-1,-1,-1,1,1,-1,-1,-1,-1,-1,-1,1,-1,1,0,1,1
|
||||||
|
-1,-1,1,-1,-1,-1,1,1,1,-1,1,-1,-1,-1,1,1,2
|
||||||
|
1,-1,1,-1,-1,-1,1,1,1,-1,-1,-1,-1,-1,-1,1,2
|
||||||
|
1,-1,1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,-1,1,2
|
||||||
|
1,-1,1,-1,-1,0,1,1,1,-1,0,0,-1,0,0,0,2
|
||||||
|
1,-1,1,-1,-1,-1,1,1,1,1,-1,-1,0,-1,1,1,2
|
||||||
|
1,-1,1,-1,-1,-1,1,1,1,-1,-1,-1,-1,-1,1,0,2
|
||||||
|
1,-1,1,-1,-1,-1,1,1,1,-1,-1,-1,-1,-1,1,0,2
|
||||||
|
1,-1,1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,-1,1,2
|
||||||
|
-1,-1,-1,1,1,1,-1,-1,-1,1,-1,1,-1,1,-1,1,1
|
||||||
|
1,-1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1,1,-1,1,1
|
||||||
|
1,-1,1,-1,-1,-1,1,1,1,-1,-1,-1,-1,-1,1,0,2
|
||||||
|
1,-1,1,-1,-1,-1,1,1,1,-1,-1,-1,-1,-1,-1,1,2
|
||||||
|
1,1,1,-1,-1,-1,1,1,1,-1,-1,-1,-1,-1,1,1,2
|
||||||
|
-1,1,1,-1,-1,1,1,1,1,-1,0,-1,-1,-1,-1,1,2
|
||||||
|
1,-1,1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,0,2
|
||||||
|
-1,-1,-1,1,1,-1,1,1,-1,1,-1,1,1,1,0,1,1
|
||||||
|
1,-1,-1,1,1,-1,1,-1,-1,1,-1,-1,-1,1,1,1,1
|
||||||
|
-1,-1,1,-1,1,1,-1,-1,-1,-1,0,-1,1,1,-1,-1,2
|
||||||
|
-1,-1,-1,1,1,1,-1,-1,-1,-1,-1,1,1,1,1,-1,1
|
||||||
|
-1,-1,1,1,1,1,1,1,-1,1,-1,-1,-1,1,-1,1,1
|
||||||
|
-1,-1,-1,1,1,1,-1,-1,-1,-1,-1,1,1,1,-1,1,1
|
||||||
|
-1,-1,-1,1,1,1,-1,-1,-1,1,-1,1,1,1,-1,-1,1
|
||||||
|
-1,-1,1,-1,-1,-1,1,1,1,1,-1,-1,-1,1,-1,1,2
|
||||||
|
1,-1,1,1,1,1,1,1,-1,-1,-1,-1,-1,1,-1,0,1
|
||||||
|
1,-1,-1,1,1,1,-1,-1,-1,1,-1,0,1,1,-1,-1,1
|
||||||
|
-1,-1,-1,1,1,1,-1,-1,-1,-1,-1,1,1,1,-1,1,1
|
||||||
|
-1,-1,1,-1,-1,1,1,1,1,1,1,-1,-1,-1,0,1,2
|
||||||
|
-1,-1,1,-1,-1,1,1,1,1,1,1,-1,-1,-1,1,1,2
|
||||||
|
-1,-1,1,-1,-1,1,0,1,0,1,1,1,-1,1,1,0,2
|
||||||
|
1,1,1,0,-1,1,1,1,1,-1,1,-1,1,-1,0,1,2
|
||||||
|
1,1,1,-1,1,1,-1,1,-1,1,1,-1,1,1,1,1,2
|
||||||
|
1,1,1,-1,1,1,-1,1,-1,1,1,-1,1,1,-1,0,2
|
||||||
|
1,-1,1,-1,0,1,0,1,1,1,-1,-1,1,1,-1,1,2
|
||||||
|
1,-1,1,-1,-1,1,1,1,1,1,-1,0,-1,1,-1,1,2
|
||||||
|
1,-1,1,-1,-1,1,1,1,-1,1,1,-1,1,1,1,1,2
|
||||||
|
1,1,1,-1,-1,1,1,1,1,1,1,-1,1,1,1,1,2
|
||||||
|
-1,1,1,-1,-1,1,1,1,-1,1,1,-1,1,1,-1,0,2
|
||||||
|
-1,1,-1,1,1,1,0,0,-1,1,-1,1,0,0,0,0,1
|
||||||
|
-1,-1,1,1,1,1,-1,-1,-1,1,-1,1,1,1,1,1,1
|
||||||
|
1,1,1,-1,-1,1,1,1,1,1,-1,-1,0,-1,1,0,2
|
||||||
|
-1,1,-1,-1,-1,-1,1,1,1,1,1,-1,-1,-1,1,1,2
|
||||||
|
-1,1,1,-1,-1,1,1,1,1,1,-1,-1,1,1,1,1,2
|
|
Binary file not shown.
|
@ -0,0 +1,96 @@
|
||||||
|
import numpy as np
|
||||||
|
import pandas as pd
|
||||||
|
from sklearn.metrics import confusion_matrix
|
||||||
|
from sklearn.model_selection import train_test_split
|
||||||
|
from sklearn.tree import DecisionTreeClassifier
|
||||||
|
from sklearn.metrics import accuracy_score
|
||||||
|
from sklearn.metrics import classification_report
|
||||||
|
|
||||||
|
# Function importing Dataset
|
||||||
|
def importdata():
|
||||||
|
dataset = pd.read_csv( 'Train.csv',sep= ',', header = None)
|
||||||
|
return dataset
|
||||||
|
|
||||||
|
# Function to split the dataset
|
||||||
|
def splitdataset(dataset):
|
||||||
|
|
||||||
|
# Separating the target variable
|
||||||
|
X = dataset.values[:, 1:5]
|
||||||
|
Y = dataset.values[:, 0]
|
||||||
|
|
||||||
|
# Splitting the dataset into train and test
|
||||||
|
X_train, X_test, y_train, y_test = train_test_split(
|
||||||
|
X, Y, test_size = 0.3, random_state = 100)
|
||||||
|
|
||||||
|
return X, Y, X_train, X_test, y_train, y_test
|
||||||
|
|
||||||
|
# Function to perform training with giniIndex.
|
||||||
|
def train_using_gini(X_train, X_test, y_train):
|
||||||
|
|
||||||
|
# Creating the classifier object
|
||||||
|
clf_gini = DecisionTreeClassifier(criterion = "gini",
|
||||||
|
random_state = 100,max_depth=3, min_samples_leaf=5)
|
||||||
|
|
||||||
|
# Performing training
|
||||||
|
clf_gini.fit(X_train, y_train)
|
||||||
|
return clf_gini
|
||||||
|
|
||||||
|
# Function to perform training with entropy.
|
||||||
|
def tarin_using_entropy(X_train, X_test, y_train):
|
||||||
|
|
||||||
|
# Decision tree with entropy
|
||||||
|
clf_entropy = DecisionTreeClassifier(
|
||||||
|
criterion = "entropy", random_state = 100,
|
||||||
|
max_depth = 3, min_samples_leaf = 5)
|
||||||
|
|
||||||
|
# Performing training
|
||||||
|
clf_entropy.fit(X_train, y_train)
|
||||||
|
return clf_entropy
|
||||||
|
|
||||||
|
|
||||||
|
# Function to make predictions
|
||||||
|
def prediction(X_test, clf_object):
|
||||||
|
|
||||||
|
# Predicton on test with giniIndex
|
||||||
|
y_pred = clf_object.predict(X_test)
|
||||||
|
print("Predicted values:")
|
||||||
|
print(y_pred)
|
||||||
|
return y_pred
|
||||||
|
|
||||||
|
# Function to calculate accuracy
|
||||||
|
def cal_accuracy(y_test, y_pred):
|
||||||
|
|
||||||
|
print("Confusion Matrix: ",
|
||||||
|
confusion_matrix(y_test, y_pred))
|
||||||
|
|
||||||
|
print ("Accuracy : ",
|
||||||
|
accuracy_score(y_test,y_pred)*100)
|
||||||
|
|
||||||
|
print("Report : ",
|
||||||
|
classification_report(y_test, y_pred))
|
||||||
|
|
||||||
|
# Driver code
|
||||||
|
def main():
|
||||||
|
|
||||||
|
# Building Phase
|
||||||
|
data = importdata()
|
||||||
|
X, Y, X_train, X_test, y_train, y_test = splitdataset(data)
|
||||||
|
clf_gini = train_using_gini(X_train, X_test, y_train)
|
||||||
|
clf_entropy = tarin_using_entropy(X_train, X_test, y_train)
|
||||||
|
|
||||||
|
# Operational Phase
|
||||||
|
print("Results Using Gini Index:")
|
||||||
|
|
||||||
|
# Prediction using gini
|
||||||
|
y_pred_gini = prediction(X_test, clf_gini)
|
||||||
|
cal_accuracy(y_test, y_pred_gini)
|
||||||
|
|
||||||
|
print("Results Using Entropy:")
|
||||||
|
# Prediction using entropy
|
||||||
|
y_pred_entropy = prediction(X_test, clf_entropy)
|
||||||
|
cal_accuracy(y_test, y_pred_entropy)
|
||||||
|
|
||||||
|
|
||||||
|
# Calling main function
|
||||||
|
if __name__=="__main__":
|
||||||
|
main()
|
Loading…
Reference in New Issue