import pandas as pd import xlsxwriter from random import uniform import math import numpy as np def calucateMean(df) -> tuple: mean = [] maximum = [] minimum = [] for col in range(df.shape[1]): # 0 ta 10 mean.append(0) maximum.append(0) minimum.append(math.inf) for row in df: if (row[col] > maximum[col]): maximum[col] = row[col] if (row[col] < minimum[col]): minimum[col] = row[col] mean[col] += row[col] mean[col] = ((int)((mean[col] / len(df))*10000))/10000 v = [] for i in range(df.shape[1]): v.append(uniform(minimum[i], maximum[i])) vm = [] for j in range(df.shape[1]): vm.append(mean[j] - v[j]) return (mean, vm) def matrixToxls(matrix, filename): workbook = xlsxwriter.Workbook(filename) worksheet = workbook.add_worksheet() row = 0 for col, data in enumerate(matrix): worksheet.write_column(row, col, data) workbook.close() def entropy(col): total = sum([row[col] for row in df]) print(total) return [-(math.fabs(row[col]) / total*100) * math.log((math.fabs(row[col]) / total*100), 2) for row in df] if __name__ == "__main__": df = pd.read_excel('dataset2.xls', sheet_name="forestfires").to_numpy() (mean, vm) = calucateMean(df) entropyMatrix = [] for col in range(df.shape[1]): entropyMatrix.append(entropy(col)) matrixToxls(entropyMatrix, "entropiesMatrix.xls")