exercise-2/entropy.py

54 lines
1.5 KiB
Python

import pandas as pd
import xlsxwriter
from random import uniform
import math
import numpy as np
def calucateMean(df) -> tuple:
mean = []
maximum = []
minimum = []
for col in range(df.shape[1]): # 0 ta 10
mean.append(0)
maximum.append(0)
minimum.append(math.inf)
for row in df:
if (row[col] > maximum[col]):
maximum[col] = row[col]
if (row[col] < minimum[col]):
minimum[col] = row[col]
mean[col] += row[col]
mean[col] = ((int)((mean[col] / len(df))*10000))/10000
v = []
for i in range(df.shape[1]):
v.append(uniform(minimum[i], maximum[i]))
vm = []
for j in range(df.shape[1]):
vm.append(mean[j] - v[j])
return (mean, vm)
def matrixToxls(matrix, filename):
workbook = xlsxwriter.Workbook(filename)
worksheet = workbook.add_worksheet()
row = 0
for col, data in enumerate(matrix):
worksheet.write_column(row, col, data)
workbook.close()
def entropy(col):
total = sum([row[col] for row in df])
print(total)
return [-(math.fabs(row[col]) / total*100) * math.log((math.fabs(row[col]) / total*100), 2) for row in df]
if __name__ == "__main__":
df = pd.read_excel('dataset2.xls', sheet_name="forestfires").to_numpy()
(mean, vm) = calucateMean(df)
entropyMatrix = []
for col in range(df.shape[1]):
entropyMatrix.append(entropy(col))
matrixToxls(entropyMatrix, "entropiesMatrix.xls")