Initial Commit
commit
51f4670f60
|
@ -0,0 +1,21 @@
|
|||
def gini_index(groups, classes):
|
||||
# count all samples at split point
|
||||
n_instances = float(sum([len(group) for group in groups]))
|
||||
# sum weighted Gini index for each group
|
||||
gini = 0.0
|
||||
for group in groups:
|
||||
size = float(len(group))
|
||||
# avoid divide by zero
|
||||
if size == 0:
|
||||
continue
|
||||
score = 0.0
|
||||
# score the group based on the score for each class
|
||||
for class_val in classes:
|
||||
p = [row[-1] for row in group].count(class_val) / size
|
||||
score += p * p
|
||||
# weight the group score by its relative size
|
||||
gini += (1.0 - score) * (size / n_instances)
|
||||
return gini
|
||||
|
||||
print(gini_index([[[1, 1], [1, 0]], [[1, 1], [1, 0]]], [0, 1]))
|
||||
print(gini_index([[[1, 0], [1, 0]], [[1, 1], [1, 1]]], [0, 1]))
|
|
@ -0,0 +1,21 @@
|
|||
def gini_index(groups, classes):
|
||||
# count all samples at split point
|
||||
n_instances = float(sum([len(group) for group in groups]))
|
||||
# sum weighted Gini index for each group
|
||||
gini = 0.0
|
||||
for group in groups:
|
||||
size = float(len(group))
|
||||
# avoid divide by zero
|
||||
if size == 0:
|
||||
continue
|
||||
score = 0.0
|
||||
# score the group based on the score for each class
|
||||
for class_val in classes:
|
||||
p = [row[-1] for row in group].count(class_val) / size
|
||||
score += p * p
|
||||
# weight the group score by its relative size
|
||||
gini += (1.0 - score) * (size / n_instances)
|
||||
return gini
|
||||
|
||||
print(gini_index([[[1, 1], [1, 0]], [[1, 1], [1, 0]]], [0, 1]))
|
||||
print(gini_index([[[1, 0], [1, 0]], [[1, 1], [1, 1]]], [0, 1]))
|
|
@ -0,0 +1,22 @@
|
|||
def gini_index(groups, classes):
|
||||
# count all samples at split point
|
||||
print(classes)
|
||||
n_instances = float(sum([len(group) for group in groups]))
|
||||
# sum weighted Gini index for each group
|
||||
gini = 0.0
|
||||
for group in groups:
|
||||
size = float(len(group))
|
||||
# avoid divide by zero
|
||||
if size == 0:
|
||||
continue
|
||||
score = 0.0
|
||||
# score the group based on the score for each class
|
||||
for class_val in classes:
|
||||
p = [row[-1] for row in group].count(class_val) / size
|
||||
score += p * p
|
||||
# weight the group score by its relative size
|
||||
gini += (1.0 - score) * (size / n_instances)
|
||||
return gini
|
||||
|
||||
print(gini_index([[[1, 1], [1, 0]], [[1, 1], [1, 0]]], [0, 1]))
|
||||
print(gini_index([[[1, 0], [1, 0]], [[1, 1], [1, 1]]], [0, 1]))
|
|
@ -0,0 +1,22 @@
|
|||
def gini_index(groups, classes):
|
||||
print(classes)
|
||||
# count all samples at split point
|
||||
n_instances = float(sum([len(group) for group in groups]))
|
||||
# sum weighted Gini index for each group
|
||||
gini = 0.0
|
||||
for group in groups:
|
||||
size = float(len(group))
|
||||
# avoid divide by zero
|
||||
if size == 0:
|
||||
continue
|
||||
score = 0.0
|
||||
# score the group based on the score for each class
|
||||
for class_val in classes:
|
||||
p = [row[-1] for row in group].count(class_val) / size
|
||||
score += p * p
|
||||
# weight the group score by its relative size
|
||||
gini += (1.0 - score) * (size / n_instances)
|
||||
return gini
|
||||
|
||||
print(gini_index([[[1, 1], [1, 0]], [[1, 1], [1, 0]]], [0, 1]))
|
||||
print(gini_index([[[1, 0], [1, 0]], [[1, 1], [1, 1]]], [0, 1]))
|
|
@ -0,0 +1,22 @@
|
|||
def gini_index(groups, classes):
|
||||
|
||||
# count all samples at split point
|
||||
n_instances = float(sum([len(group) for group in groups]))
|
||||
# sum weighted Gini index for each group
|
||||
gini = 0.0
|
||||
for group in groups:
|
||||
size = float(len(group))
|
||||
# avoid divide by zero
|
||||
if size == 0:
|
||||
continue
|
||||
score = 0.0
|
||||
# score the group based on the score for each class
|
||||
for class_val in classes:
|
||||
p = [row[-1] for row in group].count(class_val) / size
|
||||
score += p * p
|
||||
# weight the group score by its relative size
|
||||
gini += (1.0 - score) * (size / n_instances)
|
||||
return gini
|
||||
|
||||
print(gini_index([[[1, 1], [1, 0]], [[1, 1], [1, 0]]], [0, 1]))
|
||||
print(gini_index([[[1, 0], [1, 0]], [[1, 1], [1, 1]]], [0, 1]))
|
|
@ -0,0 +1,23 @@
|
|||
def gini_index(groups, classes):
|
||||
print(groups)
|
||||
print(classes)
|
||||
# count all samples at split point
|
||||
n_instances = float(sum([len(group) for group in groups]))
|
||||
# sum weighted Gini index for each group
|
||||
gini = 0.0
|
||||
for group in groups:
|
||||
size = float(len(group))
|
||||
# avoid divide by zero
|
||||
if size == 0:
|
||||
continue
|
||||
score = 0.0
|
||||
# score the group based on the score for each class
|
||||
for class_val in classes:
|
||||
p = [row[-1] for row in group].count(class_val) / size
|
||||
score += p * p
|
||||
# weight the group score by its relative size
|
||||
gini += (1.0 - score) * (size / n_instances)
|
||||
return gini
|
||||
|
||||
print(gini_index([[[1, 1], [1, 0]], [[1, 1], [1, 0]]], [0, 1]))
|
||||
print(gini_index([[[1, 0], [1, 0]], [[1, 1], [1, 1]]], [0, 1]))
|
|
@ -0,0 +1,24 @@
|
|||
def gini_index(groups, classes):
|
||||
|
||||
# count all samples at split point
|
||||
n_instances = float(sum([len(group) for group in groups]))
|
||||
# sum weighted Gini index for each group
|
||||
gini = 0.0
|
||||
print(groups)
|
||||
print(classes)
|
||||
for group in groups:
|
||||
size = float(len(group))
|
||||
# avoid divide by zero
|
||||
if size == 0:
|
||||
continue
|
||||
score = 0.0
|
||||
# score the group based on the score for each class
|
||||
for class_val in classes:
|
||||
p = [row[-1] for row in group].count(class_val) / size
|
||||
score += p * p
|
||||
# weight the group score by its relative size
|
||||
gini += (1.0 - score) * (size / n_instances)
|
||||
return gini
|
||||
|
||||
print(gini_index([[[1, 1], [1, 0]], [[1, 1], [1, 0]]], [0, 1]))
|
||||
print(gini_index([[[1, 0], [1, 0]], [[1, 1], [1, 1]]], [0, 1]))
|
|
@ -0,0 +1,24 @@
|
|||
def gini_index(groups, classes):
|
||||
|
||||
# count all samples at split point
|
||||
n_instances = float(sum([len(group) for group in groups]))
|
||||
# sum weighted Gini index for each group
|
||||
gini = 0.0
|
||||
print(groups)
|
||||
print(classes)
|
||||
for group in groups:
|
||||
size = float(len(group))
|
||||
# avoid divide by zero
|
||||
if size == 0:
|
||||
continue
|
||||
score = 0.0
|
||||
# score the group based on the score for each class
|
||||
for class_val in classes:
|
||||
p = [row[-1] for row in group].count(class_val) / size
|
||||
score += p * p
|
||||
# weight the group score by its relative size
|
||||
gini += (1.0 - score) * (size / n_instances)
|
||||
return gini
|
||||
|
||||
print(gini_index([[[1, 1], [1, 0]], [[1, 1], [1, 0]]], [0, 1]))
|
||||
print(gini_index([[[1, 0], [1, 0]], [[1, 1], [1, 1]]], [0, 1]))
|
|
@ -0,0 +1,24 @@
|
|||
def gini_index(groups, classes):
|
||||
|
||||
# count all samples at split point
|
||||
n_instances = float(sum([len(group) for group in groups]))
|
||||
# sum weighted Gini index for each group
|
||||
gini = 0.0
|
||||
print(groups)
|
||||
print(classes)
|
||||
for group in groups:
|
||||
size = float(len(group))
|
||||
# avoid divide by zero
|
||||
if size == 0:
|
||||
continue
|
||||
score = 0.0
|
||||
# score the group based on the score for each class
|
||||
for class_val in classes:
|
||||
p = [row[-1] for row in group].count(class_val) / size
|
||||
score += p * p
|
||||
# weight the group score by its relative size
|
||||
gini += (1.0 - score) * (size / n_instances)
|
||||
return gini
|
||||
|
||||
print(gini_index([[[1, 1], [1, 0]], [[1, 1], [1, 0]]], [0, 1]))
|
||||
print(gini_index([[[1, 0], [1, 0]], [[1, 1], [1, 1]]], [0, 1]))
|
|
@ -0,0 +1,24 @@
|
|||
def gini_index(groups, classes):
|
||||
|
||||
# count all samples at split point
|
||||
n_instances = float(sum([len(group) for group in groups]))
|
||||
# sum weighted Gini index for each group
|
||||
gini = 0.0
|
||||
print(groups)
|
||||
print(classes)
|
||||
for group in groups:
|
||||
size = float(len(group))
|
||||
# avoid divide by zero
|
||||
if size == 0:
|
||||
continue
|
||||
score = 0.0
|
||||
# score the group based on the score for each class
|
||||
for class_val in classes:
|
||||
p = [row[-1] for row in group].count(class_val) / size
|
||||
score += p * p
|
||||
# weight the group score by its relative size
|
||||
gini += (1.0 - score) * (size / n_instances)
|
||||
return gini
|
||||
|
||||
print(gini_index([[[1, 1], [1, 0]], [[1, 1], [1, 0]]], [0, 1]))
|
||||
print(gini_index([[[1, 0], [1, 0]], [[1, 1], [1, 1]]], [0, 1]))
|
|
@ -0,0 +1,22 @@
|
|||
def gini_index(groups, classes):
|
||||
|
||||
# count all samples at split point
|
||||
n_instances = float(sum([len(group) for group in groups]))
|
||||
# sum weighted Gini index for each group
|
||||
gini = 0.0
|
||||
for group in groups:
|
||||
size = float(len(group))
|
||||
# avoid divide by zero
|
||||
if size == 0:
|
||||
continue
|
||||
score = 0.0
|
||||
# score the group based on the score for each class
|
||||
for class_val in classes:
|
||||
p = [row[-1] for row in group].count(class_val) / size
|
||||
score += p * p
|
||||
# weight the group score by its relative size
|
||||
gini += (1.0 - score) * (size / n_instances)
|
||||
return gini
|
||||
|
||||
print(gini_index([[[1, 1], [1, 0]], [[1, 1], [1, 0]]], [0, 1]))
|
||||
print(gini_index([[[1, 0], [1, 0]], [[1, 1], [1, 1]]], [0, 1]))
|
|
@ -0,0 +1,24 @@
|
|||
def gini_index(groups, classes):
|
||||
|
||||
# count all samples at split point
|
||||
n_instances = float(sum([len(group) for group in groups]))
|
||||
# sum weighted Gini index for each group
|
||||
gini = 0.0
|
||||
for group in groups:
|
||||
size = float(len(group))
|
||||
# avoid divide by zero
|
||||
if size == 0:
|
||||
continue
|
||||
score = 0.0
|
||||
# score the group based on the score for each class
|
||||
for class_val in classes:
|
||||
for row in group:
|
||||
print(row[-1])
|
||||
p = [row[-1] for row in group].count(class_val) / size
|
||||
score += p * p
|
||||
# weight the group score by its relative size
|
||||
gini += (1.0 - score) * (size / n_instances)
|
||||
return gini
|
||||
|
||||
print(gini_index([[[1, 1], [1, 0]], [[1, 1], [1, 0]]], [0, 1]))
|
||||
print(gini_index([[[1, 0], [1, 0]], [[1, 1], [1, 1]]], [0, 1]))
|
|
@ -0,0 +1,24 @@
|
|||
def gini_index(groups, classes):
|
||||
|
||||
# count all samples at split point
|
||||
n_instances = float(sum([len(group) for group in groups]))
|
||||
# sum weighted Gini index for each group
|
||||
gini = 0.0
|
||||
for group in groups:
|
||||
size = float(len(group))
|
||||
# avoid divide by zero
|
||||
if size == 0:
|
||||
continue
|
||||
score = 0.0
|
||||
# score the group based on the score for each class
|
||||
for class_val in classes:
|
||||
for row in group:
|
||||
print(row[-1])
|
||||
p = [row[-1] for row in group].count(class_val) / size
|
||||
score += p * p
|
||||
# weight the group score by its relative size
|
||||
gini += (1.0 - score) * (size / n_instances)
|
||||
return gini
|
||||
|
||||
print(gini_index([[[1, 1], [1, 0]], [[1, 1], [1, 0]]], [0, 1]))
|
||||
print(gini_index([[[1, 0], [1, 0]], [[1, 1], [1, 1]]], [0, 1]))
|
|
@ -0,0 +1,22 @@
|
|||
def gini_index(groups, classes):
|
||||
# count all samples at split point
|
||||
n_instances = float(sum([len(group) for group in groups]))
|
||||
# sum weighted Gini index for each group
|
||||
gini = 0.0
|
||||
for group in groups:
|
||||
size = float(len(group))
|
||||
# avoid divide by zero
|
||||
if size == 0:
|
||||
continue
|
||||
score = 0.0
|
||||
# score the group based on the score for each class
|
||||
for class_val in classes:
|
||||
p = [row[-1] for row in group].count(class_val) / size
|
||||
score += p * p
|
||||
# weight the group score by its relative size
|
||||
gini += (1.0 - score) * (size / n_instances)
|
||||
return gini
|
||||
|
||||
# test Gini values
|
||||
print(gini_index([[[1, 1], [1, 0]], [[1, 1], [1, 0]]], [0, 1]))
|
||||
print(gini_index([[[1, 0], [1, 0]], [[1, 1], [1, 1]]], [0, 1]))
|
|
@ -0,0 +1,23 @@
|
|||
def gini_index(groups, classes):
|
||||
# count all samples at split point
|
||||
n_instances = float(sum([len(group) for group in groups]))
|
||||
# sum weighted Gini index for each group
|
||||
gini = 0.0
|
||||
for group in groups:
|
||||
size = float(len(group))
|
||||
# avoid divide by zero
|
||||
if size == 0:
|
||||
continue
|
||||
score = 0.0
|
||||
# score the group based on the score for each class
|
||||
for class_val in classes:
|
||||
|
||||
p = [row[-1] for row in group].count(class_val) / size
|
||||
score += p * p
|
||||
# weight the group score by its relative size
|
||||
gini += (1.0 - score) * (size / n_instances)
|
||||
return gini
|
||||
|
||||
# test Gini values
|
||||
print(gini_index([[[1, 1], [1, 0]], [[1, 1], [1, 0]]], [0, 1]))
|
||||
print(gini_index([[[1, 0], [1, 0]], [[1, 1], [1, 1]]], [0, 1]))
|
|
@ -0,0 +1,24 @@
|
|||
def gini_index(groups, classes):
|
||||
# count all samples at split point
|
||||
n_instances = float(sum([len(group) for group in groups]))
|
||||
# sum weighted Gini index for each group
|
||||
gini = 0.0
|
||||
for group in groups:
|
||||
size = float(len(group))
|
||||
# avoid divide by zero
|
||||
if size == 0:
|
||||
continue
|
||||
score = 0.0
|
||||
# score the group based on the score for each class
|
||||
for class_val in classes:
|
||||
for row in group:
|
||||
print(row[-1])
|
||||
p = [row[-1] for row in group].count(class_val) / size
|
||||
score += p * p
|
||||
# weight the group score by its relative size
|
||||
gini += (1.0 - score) * (size / n_instances)
|
||||
return gini
|
||||
|
||||
# test Gini values
|
||||
print(gini_index([[[1, 1], [1, 0]], [[1, 1], [1, 0]]], [0, 1]))
|
||||
print(gini_index([[[1, 0], [1, 0]], [[1, 1], [1, 1]]], [0, 1]))
|
|
@ -0,0 +1,24 @@
|
|||
def gini_index(groups, classes):
|
||||
# count all samples at split point
|
||||
n_instances = float(sum([len(group) for group in groups]))
|
||||
# sum weighted Gini index for each group
|
||||
gini = 0.0
|
||||
for group in groups:
|
||||
size = float(len(group))
|
||||
# avoid divide by zero
|
||||
if size == 0:
|
||||
continue
|
||||
score = 0.0
|
||||
# score the group based on the score for each class
|
||||
for class_val in classes:
|
||||
for row in group:
|
||||
print(row[-1])
|
||||
p = [row[-1] for row in group].count(class_val) / size
|
||||
score += p * p
|
||||
# weight the group score by its relative size
|
||||
gini += (1.0 - score) * (size / n_instances)
|
||||
return gini
|
||||
|
||||
# test Gini values
|
||||
print(gini_index([[[1, 1], [1, 0]], [[1, 1], [1, 0]]], [0, 1]))
|
||||
print(gini_index([[[1, 0], [1, 0]], [[1, 1], [1, 1]]], [0, 1]))
|
|
@ -0,0 +1,24 @@
|
|||
def gini_index(groups, classes):
|
||||
# count all samples at split point
|
||||
n_instances = float(sum([len(group) for group in groups]))
|
||||
# sum weighted Gini index for each group
|
||||
gini = 0.0
|
||||
for group in groups:
|
||||
size = float(len(group))
|
||||
# avoid divide by zero
|
||||
if size == 0:
|
||||
continue
|
||||
score = 0.0
|
||||
# score the group based on the score for each class
|
||||
for class_val in classes:
|
||||
for row in group:
|
||||
print(row[-1])
|
||||
p = [row[-1] for row in group].count(class_val) / size
|
||||
score += p * p
|
||||
# weight the group score by its relative size
|
||||
gini += (1.0 - score) * (size / n_instances)
|
||||
return gini
|
||||
|
||||
# test Gini values
|
||||
print(gini_index([[[1, 1], [1, 0]], [[1, 1], [1, 0]]], [0, 1]))
|
||||
print(gini_index([[[1, 0], [1, 0]], [[1, 1], [1, 1]]], [0, 1]))
|
|
@ -0,0 +1,24 @@
|
|||
def gini_index(groups, classes):
|
||||
# count all samples at split point
|
||||
n_instances = float(sum([len(group) for group in groups]))
|
||||
# sum weighted Gini index for each group
|
||||
gini = 0.0
|
||||
for group in groups:
|
||||
size = float(len(group))
|
||||
# avoid divide by zero
|
||||
if size == 0:
|
||||
continue
|
||||
score = 0.0
|
||||
# score the group based on the score for each class
|
||||
for class_val in classes:
|
||||
for row in group:
|
||||
print(row[-1])
|
||||
p = [row[-1] for row in group].count(class_val) / size
|
||||
score += p * p
|
||||
# weight the group score by its relative size
|
||||
gini += (1.0 - score) * (size / n_instances)
|
||||
return gini
|
||||
|
||||
# test Gini values
|
||||
print(gini_index([[[1, 1], [1, 0]], [[1, 1], [1, 0]]], [0, 1]))
|
||||
print(gini_index([[[1, 0], [1, 0]], [[1, 1], [1, 1]]], [0, 1]))
|
|
@ -0,0 +1,24 @@
|
|||
def gini_index(groups, classes):
|
||||
# count all samples at split point
|
||||
n_instances = float(sum([len(group) for group in groups]))
|
||||
# sum weighted Gini index for each group
|
||||
gini = 0.0
|
||||
for group in groups:
|
||||
size = float(len(group))
|
||||
# avoid divide by zero
|
||||
if size == 0:
|
||||
continue
|
||||
score = 0.0
|
||||
# score the group based on the score for each class
|
||||
for class_val in classes:
|
||||
for row in group:
|
||||
print(row[-1])
|
||||
p = [row[-1] for row in group].count(class_val) / size
|
||||
score += p * p
|
||||
# weight the group score by its relative size
|
||||
gini += (1.0 - score) * (size / n_instances)
|
||||
return gini
|
||||
|
||||
# test Gini values
|
||||
print(gini_index([[[1, 1], [1, 0]], [[1, 1], [1, 0]]], [0, 1]))
|
||||
print(gini_index([[[1, 0], [1, 0]], [[1, 1], [1, 1]]], [0, 1]))
|
|
@ -0,0 +1,24 @@
|
|||
def gini_index(groups, classes):
|
||||
# count all samples at split point
|
||||
n_instances = float(sum([len(group) for group in groups]))
|
||||
# sum weighted Gini index for each group
|
||||
gini = 0.0
|
||||
for group in groups:
|
||||
size = float(len(group))
|
||||
# avoid divide by zero
|
||||
if size == 0:
|
||||
continue
|
||||
score = 0.0
|
||||
# score the group based on the score for each class
|
||||
for class_val in classes:
|
||||
for row in group:
|
||||
print(row[-1])
|
||||
p = [row[-1] for row in group].count(class_val) / size
|
||||
score += p * p
|
||||
# weight the group score by its relative size
|
||||
gini += (1.0 - score) * (size / n_instances)
|
||||
return gini
|
||||
|
||||
# test Gini values
|
||||
print(gini_index([[[1, 1], [1, 0]], [[1, 1], [1, 0]]], [0, 1]))
|
||||
print(gini_index([[[1, 0], [1, 0]], [[1, 1], [1, 1]]], [0, 1]))
|
|
@ -0,0 +1,23 @@
|
|||
def gini_index(groups, classes):
|
||||
# count all samples at split point
|
||||
n_instances = float(sum([len(group) for group in groups]))
|
||||
# sum weighted Gini index for each group
|
||||
gini = 0.0
|
||||
for group in groups:
|
||||
size = float(len(group))
|
||||
# avoid divide by zero
|
||||
if size == 0:
|
||||
continue
|
||||
score = 0.0
|
||||
# score the group based on the score for each class
|
||||
for class_val in classes:
|
||||
|
||||
p = [row[-1] for row in group].count(class_val) / size
|
||||
score += p * p
|
||||
# weight the group score by its relative size
|
||||
gini += (1.0 - score) * (size / n_instances)
|
||||
return gini
|
||||
|
||||
# test Gini values
|
||||
print(gini_index([[[1, 1], [1, 0]], [[1, 1], [1, 0]]], [0, 1]))
|
||||
print(gini_index([[[1, 0], [1, 0]], [[1, 1], [1, 1]]], [0, 1]))
|
|
@ -0,0 +1,22 @@
|
|||
def gini_index(groups, classes):
|
||||
# count all samples at split point
|
||||
n_instances = float(sum([len(group) for group in groups]))
|
||||
# sum weighted Gini index for each group
|
||||
gini = 0.0
|
||||
for group in groups:
|
||||
size = float(len(group))
|
||||
# avoid divide by zero
|
||||
if size == 0:
|
||||
continue
|
||||
score = 0.0
|
||||
# score the group based on the score for each class
|
||||
for class_val in classes:
|
||||
p = [row[-1] for row in group].count(class_val) / size
|
||||
score += p * p
|
||||
# weight the group score by its relative size
|
||||
gini += (1.0 - score) * (size / n_instances)
|
||||
return gini
|
||||
|
||||
# test Gini values
|
||||
print(gini_index([[[1, 1], [1, 0]], [[1, 1], [1, 0]]], [0, 1]))
|
||||
print(gini_index([[[1, 0], [1, 0]], [[1, 1], [1, 1]]], [0, 1]))
|
|
@ -0,0 +1,54 @@
|
|||
def test_split(index, value, dataset):
|
||||
left, right = list(), list()
|
||||
for row in dataset:
|
||||
if row[index] < value:
|
||||
left.append(row)
|
||||
else:
|
||||
right.append(row)
|
||||
return left, right
|
||||
|
||||
# Calculate the Gini index for a split dataset
|
||||
def gini_index(groups, classes):
|
||||
# count all samples at split point
|
||||
n_instances = float(sum([len(group) for group in groups]))
|
||||
# sum weighted Gini index for each group
|
||||
gini = 0.0
|
||||
for group in groups:
|
||||
size = float(len(group))
|
||||
# avoid divide by zero
|
||||
if size == 0:
|
||||
continue
|
||||
score = 0.0
|
||||
# score the group based on the score for each class
|
||||
for class_val in classes:
|
||||
p = [row[-1] for row in group].count(class_val) / size
|
||||
score += p * p
|
||||
# weight the group score by its relative size
|
||||
gini += (1.0 - score) * (size / n_instances)
|
||||
return gini
|
||||
|
||||
# Select the best split point for a dataset
|
||||
def get_split(dataset):
|
||||
class_values = list(set(row[-1] for row in dataset))
|
||||
b_index, b_value, b_score, b_groups = 999, 999, 999, None
|
||||
for index in range(len(dataset[0])-1):
|
||||
for row in dataset:
|
||||
groups = test_split(index, row[index], dataset)
|
||||
gini = gini_index(groups, class_values)
|
||||
print('X%d < %.3f Gini=%.3f' % ((index+1), row[index], gini))
|
||||
if gini < b_score:
|
||||
b_index, b_value, b_score, b_groups = index, row[index], gini, groups
|
||||
return {'index':b_index, 'value':b_value, 'groups':b_groups}
|
||||
|
||||
dataset = [[2.771244718,1.784783929,0],
|
||||
[1.728571309,1.169761413,0],
|
||||
[3.678319846,2.81281357,0],
|
||||
[3.961043357,2.61995032,0],
|
||||
[2.999208922,2.209014212,0],
|
||||
[7.497545867,3.162953546,1],
|
||||
[9.00220326,3.339047188,1],
|
||||
[7.444542326,0.476683375,1],
|
||||
[10.12493903,3.234550982,1],
|
||||
[6.642287351,3.319983761,1]]
|
||||
split = get_split(dataset)
|
||||
print('Split: [X%d < %.3f]' % ((split['index']+1), split['value']))
|
|
@ -0,0 +1,48 @@
|
|||
import pandas as pd
|
||||
|
||||
|
||||
def test_split(index, value, dataset):
|
||||
left, right = list(), list()
|
||||
for row in dataset:
|
||||
if row[index] < value:
|
||||
left.append(row)
|
||||
else:
|
||||
right.append(row)
|
||||
return left, right
|
||||
|
||||
# Calculate the Gini index for a split dataset
|
||||
def gini_index(groups, classes):
|
||||
# count all samples at split point
|
||||
n_instances = float(sum([len(group) for group in groups]))
|
||||
# sum weighted Gini index for each group
|
||||
gini = 0.0
|
||||
for group in groups:
|
||||
size = float(len(group))
|
||||
# avoid divide by zero
|
||||
if size == 0:
|
||||
continue
|
||||
score = 0.0
|
||||
# score the group based on the score for each class
|
||||
for class_val in classes:
|
||||
p = [row[-1] for row in group].count(class_val) / size
|
||||
score += p * p
|
||||
# weight the group score by its relative size
|
||||
gini += (1.0 - score) * (size / n_instances)
|
||||
return gini
|
||||
|
||||
# Select the best split point for a dataset
|
||||
def get_split(dataset):
|
||||
class_values = list(set(row[-1] for row in dataset))
|
||||
b_index, b_value, b_score, b_groups = 999, 999, 999, None
|
||||
for index in range(len(dataset[0])-1):
|
||||
for row in dataset:
|
||||
groups = test_split(index, row[index], dataset)
|
||||
gini = gini_index(groups, class_values)
|
||||
print('X%d < %.3f Gini=%.3f' % ((index+1), row[index], gini))
|
||||
if gini < b_score:
|
||||
b_index, b_value, b_score, b_groups = index, row[index], gini, groups
|
||||
return {'index':b_index, 'value':b_value, 'groups':b_groups}
|
||||
|
||||
dataset = pd.read_excel('dataset2.xls', sheet_name="forestfires").to_numpy()
|
||||
split = get_split(dataset)
|
||||
print('Split: [X%d < %.3f]' % ((split['index']+1), split['value']))
|
|
@ -0,0 +1,48 @@
|
|||
import pandas as pd
|
||||
|
||||
|
||||
def test_split(index, value, dataset):
|
||||
left, right = list(), list()
|
||||
for row in dataset:
|
||||
if row[index] < value:
|
||||
left.append(row)
|
||||
else:
|
||||
right.append(row)
|
||||
return left, right
|
||||
|
||||
# Calculate the Gini index for a split dataset
|
||||
def gini_index(groups, classes):
|
||||
# count all samples at split point
|
||||
n_instances = float(sum([len(group) for group in groups]))
|
||||
# sum weighted Gini index for each group
|
||||
gini = 0.0
|
||||
for group in groups:
|
||||
size = float(len(group))
|
||||
# avoid divide by zero
|
||||
if size == 0:
|
||||
continue
|
||||
score = 0.0
|
||||
# score the group based on the score for each class
|
||||
for class_val in classes:
|
||||
p = [row[-1] for row in group].count(class_val) / size
|
||||
score += p * p
|
||||
# weight the group score by its relative size
|
||||
gini += (1.0 - score) * (size / n_instances)
|
||||
return gini
|
||||
|
||||
# Select the best split point for a dataset
|
||||
def get_split(dataset):
|
||||
class_values = list(set(row[-1] for row in dataset))
|
||||
b_index, b_value, b_score, b_groups = 999, 999, 999, None
|
||||
for index in range(len(dataset[0])-1):
|
||||
for row in dataset:
|
||||
groups = test_split(index, row[index], dataset)
|
||||
gini = gini_index(groups, class_values)
|
||||
print('X%d < %.3f Gini=%.3f' % ((index+1), row[index], gini))
|
||||
if gini < b_score:
|
||||
b_index, b_value, b_score, b_groups = index, row[index], gini, groups
|
||||
return {'index':b_index, 'value':b_value, 'groups':b_groups}
|
||||
|
||||
dataset = pd.read_excel('train.xls', sheet_name="Sheet1").to_numpy()
|
||||
split = get_split(dataset)
|
||||
print('Split: [X%d < %.3f]' % ((split['index']+1), split['value']))
|
|
@ -0,0 +1,48 @@
|
|||
import pandas as pd
|
||||
|
||||
|
||||
def test_split(index, value, dataset):
|
||||
left, right = list(), list()
|
||||
for row in dataset:
|
||||
if row[index] < value:
|
||||
left.append(row)
|
||||
else:
|
||||
right.append(row)
|
||||
return left, right
|
||||
|
||||
# Calculate the Gini index for a split dataset
|
||||
def gini_index(groups, classes):
|
||||
# count all samples at split point
|
||||
n_instances = float(sum([len(group) for group in groups]))
|
||||
# sum weighted Gini index for each group
|
||||
gini = 0.0
|
||||
for group in groups:
|
||||
size = float(len(group))
|
||||
# avoid divide by zero
|
||||
if size == 0:
|
||||
continue
|
||||
score = 0.0
|
||||
# score the group based on the score for each class
|
||||
for class_val in classes:
|
||||
p = [row[-1] for row in group].count(class_val) / size
|
||||
score += p * p
|
||||
# weight the group score by its relative size
|
||||
gini += (1.0 - score) * (size / n_instances)
|
||||
return gini
|
||||
|
||||
# Select the best split point for a dataset
|
||||
def get_split(dataset):
|
||||
class_values = list(set(row[-1] for row in dataset))
|
||||
b_index, b_value, b_score, b_groups = 999, 999, 999, None
|
||||
for index in range(len(dataset[0])-1):
|
||||
for row in dataset:
|
||||
groups = test_split(index, row[index], dataset)
|
||||
gini = gini_index(groups, class_values)
|
||||
print('X%d < %.3f Gini=%.3f' % ((index+1), row[index], gini))
|
||||
if gini < b_score:
|
||||
b_index, b_value, b_score, b_groups = index, row[index], gini, groups
|
||||
return {'index':b_index, 'value':b_value, 'groups':b_groups}
|
||||
|
||||
dataset = pd.read_excel('Train.xlsx', sheet_name="Sheet1").to_numpy()
|
||||
split = get_split(dataset)
|
||||
print('Split: [X%d < %.3f]' % ((split['index']+1), split['value']))
|
|
@ -0,0 +1,48 @@
|
|||
import pandas as pd
|
||||
|
||||
|
||||
def test_split(index, value, dataset):
|
||||
left, right = list(), list()
|
||||
for row in dataset:
|
||||
if row[index] < value:
|
||||
left.append(row)
|
||||
else:
|
||||
right.append(row)
|
||||
return left, right
|
||||
|
||||
# Calculate the Gini index for a split dataset
|
||||
def gini_index(groups, classes):
|
||||
# count all samples at split point
|
||||
n_instances = float(sum([len(group) for group in groups]))
|
||||
# sum weighted Gini index for each group
|
||||
gini = 0.0
|
||||
for group in groups:
|
||||
size = float(len(group))
|
||||
# avoid divide by zero
|
||||
if size == 0:
|
||||
continue
|
||||
score = 0.0
|
||||
# score the group based on the score for each class
|
||||
for class_val in classes:
|
||||
p = [row[-1] for row in group].count(class_val) / size
|
||||
score += p * p
|
||||
# weight the group score by its relative size
|
||||
gini += (1.0 - score) * (size / n_instances)
|
||||
return gini
|
||||
|
||||
# Select the best split point for a dataset
|
||||
def get_split(dataset):
|
||||
class_values = list(set(row[-1] for row in dataset))
|
||||
b_index, b_value, b_score, b_groups = 999, 999, 999, None
|
||||
for index in range(len(dataset[0])-1):
|
||||
for row in dataset:
|
||||
groups = test_split(index, row[index], dataset)
|
||||
gini = gini_index(groups, class_values)
|
||||
print('X%d < %.3f Gini=%.3f' % ((index+1), row[index], gini))
|
||||
if gini < b_score:
|
||||
b_index, b_value, b_score, b_groups = index, row[index], gini, groups
|
||||
return {'index':b_index, 'value':b_value, 'groups':b_groups}
|
||||
|
||||
dataset = pd.read_excel('Train.xlsx', sheet_name="Sheet1").to_numpy()
|
||||
split = get_split(dataset)
|
||||
print('Split: [X%d < %.3f]' % ((split['index']+1), split['value']))
|
|
@ -0,0 +1,90 @@
|
|||
import pandas as pd
|
||||
def test_split(index, value, dataset):
|
||||
left, right = list(), list()
|
||||
for row in dataset:
|
||||
if row[index] < value:
|
||||
left.append(row)
|
||||
else:
|
||||
right.append(row)
|
||||
return left, right
|
||||
|
||||
# Calculate the Gini index for a split dataset
|
||||
def gini_index(groups, classes):
|
||||
# count all samples at split point
|
||||
n_instances = float(sum([len(group) for group in groups]))
|
||||
# sum weighted Gini index for each group
|
||||
gini = 0.0
|
||||
for group in groups:
|
||||
size = float(len(group))
|
||||
# avoid divide by zero
|
||||
if size == 0:
|
||||
continue
|
||||
score = 0.0
|
||||
# score the group based on the score for each class
|
||||
for class_val in classes:
|
||||
p = [row[-1] for row in group].count(class_val) / size
|
||||
score += p * p
|
||||
# weight the group score by its relative size
|
||||
gini += (1.0 - score) * (size / n_instances)
|
||||
return gini
|
||||
|
||||
# Select the best split point for a dataset
|
||||
def get_split(dataset):
|
||||
class_values = list(set(row[-1] for row in dataset))
|
||||
b_index, b_value, b_score, b_groups = 999, 999, 999, None
|
||||
for index in range(len(dataset[0])-1):
|
||||
for row in dataset:
|
||||
groups = test_split(index, row[index], dataset)
|
||||
gini = gini_index(groups, class_values)
|
||||
if gini < b_score:
|
||||
b_index, b_value, b_score, b_groups = index, row[index], gini, groups
|
||||
return {'index':b_index, 'value':b_value, 'groups':b_groups}
|
||||
|
||||
# Create a terminal node value
|
||||
def to_terminal(group):
|
||||
outcomes = [row[-1] for row in group]
|
||||
return max(set(outcomes), key=outcomes.count)
|
||||
|
||||
# Create child splits for a node or make terminal
|
||||
def split(node, max_depth, min_size, depth):
|
||||
left, right = node['groups']
|
||||
del(node['groups'])
|
||||
# check for a no split
|
||||
if not left or not right:
|
||||
node['left'] = node['right'] = to_terminal(left + right)
|
||||
return
|
||||
# check for max depth
|
||||
if depth >= max_depth:
|
||||
node['left'], node['right'] = to_terminal(left), to_terminal(right)
|
||||
return
|
||||
# process left child
|
||||
if len(left) <= min_size:
|
||||
node['left'] = to_terminal(left)
|
||||
else:
|
||||
node['left'] = get_split(left)
|
||||
split(node['left'], max_depth, min_size, depth+1)
|
||||
# process right child
|
||||
if len(right) <= min_size:
|
||||
node['right'] = to_terminal(right)
|
||||
else:
|
||||
node['right'] = get_split(right)
|
||||
split(node['right'], max_depth, min_size, depth+1)
|
||||
|
||||
# Build a decision tree
|
||||
def build_tree(train, max_depth, min_size):
|
||||
root = get_split(train)
|
||||
split(root, max_depth, min_size, 1)
|
||||
return root
|
||||
|
||||
# Print a decision tree
|
||||
def print_tree(node, depth=0):
|
||||
if isinstance(node, dict):
|
||||
print('%s[X%d < %.3f]' % ((depth*' ', (node['index']+1), node['value'])))
|
||||
print_tree(node['left'], depth+1)
|
||||
print_tree(node['right'], depth+1)
|
||||
else:
|
||||
print('%s[%s]' % ((depth*' ', node)))
|
||||
|
||||
dataset = pd.read_excel('Train.xlsx', sheet_name="Sheet1").to_numpy()
|
||||
tree = build_tree(dataset, 1, 1)
|
||||
print_tree(tree)
|
|
@ -0,0 +1,90 @@
|
|||
import pandas as pd
|
||||
def test_split(index, value, dataset):
|
||||
left, right = list(), list()
|
||||
for row in dataset:
|
||||
if row[index] < value:
|
||||
left.append(row)
|
||||
else:
|
||||
right.append(row)
|
||||
return left, right
|
||||
|
||||
# Calculate the Gini index for a split dataset
|
||||
def gini_index(groups, classes):
|
||||
# count all samples at split point
|
||||
n_instances = float(sum([len(group) for group in groups]))
|
||||
# sum weighted Gini index for each group
|
||||
gini = 0.0
|
||||
for group in groups:
|
||||
size = float(len(group))
|
||||
# avoid divide by zero
|
||||
if size == 0:
|
||||
continue
|
||||
score = 0.0
|
||||
# score the group based on the score for each class
|
||||
for class_val in classes:
|
||||
p = [row[-1] for row in group].count(class_val) / size
|
||||
score += p * p
|
||||
# weight the group score by its relative size
|
||||
gini += (1.0 - score) * (size / n_instances)
|
||||
return gini
|
||||
|
||||
# Select the best split point for a dataset
|
||||
def get_split(dataset):
|
||||
class_values = list(set(row[-1] for row in dataset))
|
||||
b_index, b_value, b_score, b_groups = 999, 999, 999, None
|
||||
for index in range(len(dataset[0])-1):
|
||||
for row in dataset:
|
||||
groups = test_split(index, row[index], dataset)
|
||||
gini = gini_index(groups, class_values)
|
||||
if gini < b_score:
|
||||
b_index, b_value, b_score, b_groups = index, row[index], gini, groups
|
||||
return {'index':b_index, 'value':b_value, 'groups':b_groups}
|
||||
|
||||
# Create a terminal node value
|
||||
def to_terminal(group):
|
||||
outcomes = [row[-1] for row in group]
|
||||
return max(set(outcomes), key=outcomes.count)
|
||||
|
||||
# Create child splits for a node or make terminal
|
||||
def split(node, max_depth, min_size, depth):
|
||||
left, right = node['groups']
|
||||
del(node['groups'])
|
||||
# check for a no split
|
||||
if not left or not right:
|
||||
node['left'] = node['right'] = to_terminal(left + right)
|
||||
return
|
||||
# check for max depth
|
||||
if depth >= max_depth:
|
||||
node['left'], node['right'] = to_terminal(left), to_terminal(right)
|
||||
return
|
||||
# process left child
|
||||
if len(left) <= min_size:
|
||||
node['left'] = to_terminal(left)
|
||||
else:
|
||||
node['left'] = get_split(left)
|
||||
split(node['left'], max_depth, min_size, depth+1)
|
||||
# process right child
|
||||
if len(right) <= min_size:
|
||||
node['right'] = to_terminal(right)
|
||||
else:
|
||||
node['right'] = get_split(right)
|
||||
split(node['right'], max_depth, min_size, depth+1)
|
||||
|
||||
# Build a decision tree
|
||||
def build_tree(train, max_depth, min_size):
|
||||
root = get_split(train)
|
||||
split(root, max_depth, min_size, 1)
|
||||
return root
|
||||
|
||||
# Print a decision tree
|
||||
def print_tree(node, depth=0):
|
||||
if isinstance(node, dict):
|
||||
print('%s[X%d < %.3f]' % ((depth*' ', (node['index']+1), node['value'])))
|
||||
print_tree(node['left'], depth+1)
|
||||
print_tree(node['right'], depth+1)
|
||||
else:
|
||||
print('%s[%s]' % ((depth*' ', node)))
|
||||
|
||||
dataset = pd.read_excel('Train.xlsx', sheet_name="Sheet1").to_numpy()
|
||||
tree = build_tree(dataset, 5, 1)
|
||||
print_tree(tree)
|
|
@ -0,0 +1,90 @@
|
|||
import pandas as pd
|
||||
def test_split(index, value, dataset):
|
||||
left, right = list(), list()
|
||||
for row in dataset:
|
||||
if row[index] < value:
|
||||
left.append(row)
|
||||
else:
|
||||
right.append(row)
|
||||
return left, right
|
||||
|
||||
# Calculate the Gini index for a split dataset
|
||||
def gini_index(groups, classes):
|
||||
# count all samples at split point
|
||||
n_instances = float(sum([len(group) for group in groups]))
|
||||
# sum weighted Gini index for each group
|
||||
gini = 0.0
|
||||
for group in groups:
|
||||
size = float(len(group))
|
||||
# avoid divide by zero
|
||||
if size == 0:
|
||||
continue
|
||||
score = 0.0
|
||||
# score the group based on the score for each class
|
||||
for class_val in classes:
|
||||
p = [row[-1] for row in group].count(class_val) / size
|
||||
score += p * p
|
||||
# weight the group score by its relative size
|
||||
gini += (1.0 - score) * (size / n_instances)
|
||||
return gini
|
||||
|
||||
# Select the best split point for a dataset
|
||||
def get_split(dataset):
|
||||
class_values = list(set(row[-1] for row in dataset))
|
||||
b_index, b_value, b_score, b_groups = 999, 999, 999, None
|
||||
for index in range(len(dataset[0])-1):
|
||||
for row in dataset:
|
||||
groups = test_split(index, row[index], dataset)
|
||||
gini = gini_index(groups, class_values)
|
||||
if gini < b_score:
|
||||
b_index, b_value, b_score, b_groups = index, row[index], gini, groups
|
||||
return {'index':b_index, 'value':b_value, 'groups':b_groups}
|
||||
|
||||
# Create a terminal node value
|
||||
def to_terminal(group):
|
||||
outcomes = [row[-1] for row in group]
|
||||
return max(set(outcomes), key=outcomes.count)
|
||||
|
||||
# Create child splits for a node or make terminal
|
||||
def split(node, max_depth, min_size, depth):
|
||||
left, right = node['groups']
|
||||
del(node['groups'])
|
||||
# check for a no split
|
||||
if not left or not right:
|
||||
node['left'] = node['right'] = to_terminal(left + right)
|
||||
return
|
||||
# check for max depth
|
||||
if depth >= max_depth:
|
||||
node['left'], node['right'] = to_terminal(left), to_terminal(right)
|
||||
return
|
||||
# process left child
|
||||
if len(left) <= min_size:
|
||||
node['left'] = to_terminal(left)
|
||||
else:
|
||||
node['left'] = get_split(left)
|
||||
split(node['left'], max_depth, min_size, depth+1)
|
||||
# process right child
|
||||
if len(right) <= min_size:
|
||||
node['right'] = to_terminal(right)
|
||||
else:
|
||||
node['right'] = get_split(right)
|
||||
split(node['right'], max_depth, min_size, depth+1)
|
||||
|
||||
# Build a decision tree
|
||||
def build_tree(train, max_depth, min_size):
|
||||
root = get_split(train)
|
||||
split(root, max_depth, min_size, 1)
|
||||
return root
|
||||
|
||||
# Print a decision tree
|
||||
def print_tree(node, depth=0):
|
||||
if isinstance(node, dict):
|
||||
print('%s[X%d < %.3f]' % ((depth*' ', (node['index']+1), node['value'])))
|
||||
print_tree(node['left'], depth+1)
|
||||
print_tree(node['right'], depth+1)
|
||||
else:
|
||||
print('%s[%s]' % ((depth*' ', node)))
|
||||
|
||||
dataset = pd.read_excel('Train.xlsx', sheet_name="Sheet1").to_numpy()
|
||||
tree = build_tree(dataset, 5, 1)
|
||||
print_tree(tree)
|
|
@ -0,0 +1,90 @@
|
|||
import pandas as pd
|
||||
def test_split(index, value, dataset):
|
||||
left, right = list(), list()
|
||||
for row in dataset:
|
||||
if row[index] < value:
|
||||
left.append(row)
|
||||
else:
|
||||
right.append(row)
|
||||
return left, right
|
||||
|
||||
# Calculate the Gini index for a split dataset
|
||||
def gini_index(groups, classes):
|
||||
# count all samples at split point
|
||||
n_instances = float(sum([len(group) for group in groups]))
|
||||
# sum weighted Gini index for each group
|
||||
gini = 0.0
|
||||
for group in groups:
|
||||
size = float(len(group))
|
||||
# avoid divide by zero
|
||||
if size == 0:
|
||||
continue
|
||||
score = 0.0
|
||||
# score the group based on the score for each class
|
||||
for class_val in classes:
|
||||
p = [row[-1] for row in group].count(class_val) / size
|
||||
score += p * p
|
||||
# weight the group score by its relative size
|
||||
gini += (1.0 - score) * (size / n_instances)
|
||||
return gini
|
||||
|
||||
# Select the best split point for a dataset
|
||||
def get_split(dataset):
|
||||
class_values = list(set(row[-1] for row in dataset))
|
||||
b_index, b_value, b_score, b_groups = 999, 999, 999, None
|
||||
for index in range(len(dataset[0])-1):
|
||||
for row in dataset:
|
||||
groups = test_split(index, row[index], dataset)
|
||||
gini = gini_index(groups, class_values)
|
||||
if gini < b_score:
|
||||
b_index, b_value, b_score, b_groups = index, row[index], gini, groups
|
||||
return {'index':b_index, 'value':b_value, 'groups':b_groups}
|
||||
|
||||
# Create a terminal node value
|
||||
def to_terminal(group):
|
||||
outcomes = [row[-1] for row in group]
|
||||
return max(set(outcomes), key=outcomes.count)
|
||||
|
||||
# Create child splits for a node or make terminal
|
||||
def split(node, max_depth, min_size, depth):
|
||||
left, right = node['groups']
|
||||
del(node['groups'])
|
||||
# check for a no split
|
||||
if not left or not right:
|
||||
node['left'] = node['right'] = to_terminal(left + right)
|
||||
return
|
||||
# check for max depth
|
||||
if depth >= max_depth:
|
||||
node['left'], node['right'] = to_terminal(left), to_terminal(right)
|
||||
return
|
||||
# process left child
|
||||
if len(left) <= min_size:
|
||||
node['left'] = to_terminal(left)
|
||||
else:
|
||||
node['left'] = get_split(left)
|
||||
split(node['left'], max_depth, min_size, depth+1)
|
||||
# process right child
|
||||
if len(right) <= min_size:
|
||||
node['right'] = to_terminal(right)
|
||||
else:
|
||||
node['right'] = get_split(right)
|
||||
split(node['right'], max_depth, min_size, depth+1)
|
||||
|
||||
# Build a decision tree
|
||||
def build_tree(train, max_depth, min_size):
|
||||
root = get_split(train)
|
||||
split(root, max_depth, min_size, 1)
|
||||
return root
|
||||
|
||||
# Print a decision tree
|
||||
def print_tree(node, depth=0):
|
||||
if isinstance(node, dict):
|
||||
print('%s[X%d < %.3f]' % ((depth*' ', (node['index']+1), node['value'])))
|
||||
print_tree(node['left'], depth+1)
|
||||
print_tree(node['right'], depth+1)
|
||||
else:
|
||||
print('%s[%s]' % ((depth*' ', node)))
|
||||
|
||||
dataset = pd.read_excel('Train.xlsx', sheet_name="Sheet1").to_numpy()
|
||||
tree = build_tree(dataset, 5, 0)
|
||||
print_tree(tree)
|
|
@ -0,0 +1,92 @@
|
|||
import pandas as pd
|
||||
def test_split(index, value, dataset):
|
||||
left, right = list(), list()
|
||||
for row in dataset:
|
||||
if row[index] < value:
|
||||
left.append(row)
|
||||
else:
|
||||
right.append(row)
|
||||
return left, right
|
||||
|
||||
# Calculate the Gini index for a split dataset
|
||||
def gini_index(groups, classes):
|
||||
# count all samples at split point
|
||||
n_instances = float(sum([len(group) for group in groups]))
|
||||
# sum weighted Gini index for each group
|
||||
gini = 0.0
|
||||
for group in groups:
|
||||
size = float(len(group))
|
||||
# avoid divide by zero
|
||||
if size == 0:
|
||||
continue
|
||||
score = 0.0
|
||||
# score the group based on the score for each class
|
||||
for class_val in classes:
|
||||
p = [row[-1] for row in group].count(class_val) / size
|
||||
score += p * p
|
||||
# weight the group score by its relative size
|
||||
gini += (1.0 - score) * (size / n_instances)
|
||||
return gini
|
||||
|
||||
# Select the best split point for a dataset
|
||||
def get_split(dataset):
|
||||
class_values = list(set(row[-1] for row in dataset))
|
||||
b_index, b_value, b_score, b_groups = 999, 999, 999, None
|
||||
for index in range(len(dataset[0])-1):
|
||||
for row in dataset:
|
||||
groups = test_split(index, row[index], dataset)
|
||||
gini = gini_index(groups, class_values)
|
||||
if gini < b_score:
|
||||
b_index, b_value, b_score, b_groups = index, row[index], gini, groups
|
||||
return {'index':b_index, 'value':b_value, 'groups':b_groups}
|
||||
|
||||
# Create a terminal node value
|
||||
def to_terminal(group):
|
||||
outcomes = [row[-1] for row in group]
|
||||
return max(set(outcomes), key=outcomes.count)
|
||||
|
||||
# Create child splits for a node or make terminal
|
||||
def split(node, max_depth, min_size, depth):
|
||||
left, right = node['groups']
|
||||
del(node['groups'])
|
||||
# check for a no split
|
||||
if not left or not right:
|
||||
node['left'] = node['right'] = to_terminal(left + right)
|
||||
return
|
||||
# check for max depth
|
||||
if depth >= max_depth:
|
||||
node['left'], node['right'] = to_terminal(left), to_terminal(right)
|
||||
return
|
||||
# process left child
|
||||
if len(left) <= min_size:
|
||||
node['left'] = to_terminal(left)
|
||||
else:
|
||||
node['left'] = get_split(left)
|
||||
split(node['left'], max_depth, min_size, depth+1)
|
||||
# process right child
|
||||
if len(right) <= min_size:
|
||||
node['right'] = to_terminal(right)
|
||||
else:
|
||||
node['right'] = get_split(right)
|
||||
split(node['right'], max_depth, min_size, depth+1)
|
||||
|
||||
# Build a decision tree
|
||||
def build_tree(train, max_depth, min_size):
|
||||
root = get_split(train)
|
||||
split(root, max_depth, min_size, 1)
|
||||
return root
|
||||
|
||||
# Print a decision tree
|
||||
def print_tree(node, depth=0):
|
||||
if isinstance(node, dict):
|
||||
print('%s[X%d < %.3f]' % ((depth*' ', (node['index']+1), node['value'])))
|
||||
print_tree(node['left'], depth+1)
|
||||
print_tree(node['right'], depth+1)
|
||||
else:
|
||||
print('%s[%s]' % ((depth*' ', node)))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
dataset = pd.read_excel('Train.xlsx', sheet_name="Sheet1").to_numpy()
|
||||
tree = build_tree(dataset, 5, 0)
|
||||
print_tree(tree)
|
|
@ -0,0 +1,92 @@
|
|||
import pandas as pd
|
||||
def test_split(index, value, dataset):
|
||||
left, right = list(), list()
|
||||
for row in dataset:
|
||||
if row[index] < value:
|
||||
left.append(row)
|
||||
else:
|
||||
right.append(row)
|
||||
return left, right
|
||||
|
||||
# Calculate the Gini index for a split dataset
|
||||
def gini_index(groups, classes):
|
||||
# count all samples at split point
|
||||
n_instances = float(sum([len(group) for group in groups]))
|
||||
# sum weighted Gini index for each group
|
||||
gini = 0.0
|
||||
for group in groups:
|
||||
size = float(len(group))
|
||||
# avoid divide by zero
|
||||
if size == 0:
|
||||
continue
|
||||
score = 0.0
|
||||
# score the group based on the score for each class
|
||||
for class_val in classes:
|
||||
p = [row[-1] for row in group].count(class_val) / size
|
||||
score += p * p
|
||||
# weight the group score by its relative size
|
||||
gini += (1.0 - score) * (size / n_instances)
|
||||
return gini
|
||||
|
||||
# Select the best split point for a dataset
|
||||
def get_split(dataset):
|
||||
class_values = list(set(row[-1] for row in dataset))
|
||||
b_index, b_value, b_score, b_groups = 999, 999, 999, None
|
||||
for index in range(len(dataset[0])-1):
|
||||
for row in dataset:
|
||||
groups = test_split(index, row[index], dataset)
|
||||
gini = gini_index(groups, class_values)
|
||||
if gini < b_score:
|
||||
b_index, b_value, b_score, b_groups = index, row[index], gini, groups
|
||||
return {'index':b_index, 'value':b_value, 'groups':b_groups}
|
||||
|
||||
# Create a terminal node value
|
||||
def to_terminal(group):
|
||||
outcomes = [row[-1] for row in group]
|
||||
return max(set(outcomes), key=outcomes.count)
|
||||
|
||||
# Create child splits for a node or make terminal
|
||||
def split(node, max_depth, min_size, depth):
|
||||
left, right = node['groups']
|
||||
del(node['groups'])
|
||||
# check for a no split
|
||||
if not left or not right:
|
||||
node['left'] = node['right'] = to_terminal(left + right)
|
||||
return
|
||||
# check for max depth
|
||||
if depth >= max_depth:
|
||||
node['left'], node['right'] = to_terminal(left), to_terminal(right)
|
||||
return
|
||||
# process left child
|
||||
if len(left) <= min_size:
|
||||
node['left'] = to_terminal(left)
|
||||
else:
|
||||
node['left'] = get_split(left)
|
||||
split(node['left'], max_depth, min_size, depth+1)
|
||||
# process right child
|
||||
if len(right) <= min_size:
|
||||
node['right'] = to_terminal(right)
|
||||
else:
|
||||
node['right'] = get_split(right)
|
||||
split(node['right'], max_depth, min_size, depth+1)
|
||||
|
||||
# Build a decision tree
|
||||
def build_tree(train, max_depth, min_size):
|
||||
root = get_split(train)
|
||||
split(root, max_depth, min_size, 1)
|
||||
return root
|
||||
|
||||
# Print a decision tree
|
||||
def print_tree(node, depth=0):
|
||||
if isinstance(node, dict):
|
||||
print('%s[X%d < %.3f]' % ((depth*' ', (node['index']+1), node['value'])))
|
||||
print_tree(node['left'], depth+1)
|
||||
print_tree(node['right'], depth+1)
|
||||
else:
|
||||
print('%s[%s]' % ((depth*' ', node)))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
dataset = pd.read_excel('Train.xlsx', sheet_name="Sheet1").to_numpy()
|
||||
tree = build_tree(dataset, 1, 1)
|
||||
print_tree(tree)
|
|
@ -0,0 +1,92 @@
|
|||
import pandas as pd
|
||||
def test_split(index, value, dataset):
|
||||
left, right = list(), list()
|
||||
for row in dataset:
|
||||
if row[index] < value:
|
||||
left.append(row)
|
||||
else:
|
||||
right.append(row)
|
||||
return left, right
|
||||
|
||||
# Calculate the Gini index for a split dataset
|
||||
def gini_index(groups, classes):
|
||||
# count all samples at split point
|
||||
n_instances = float(sum([len(group) for group in groups]))
|
||||
# sum weighted Gini index for each group
|
||||
gini = 0.0
|
||||
for group in groups:
|
||||
size = float(len(group))
|
||||
# avoid divide by zero
|
||||
if size == 0:
|
||||
continue
|
||||
score = 0.0
|
||||
# score the group based on the score for each class
|
||||
for class_val in classes:
|
||||
p = [row[-1] for row in group].count(class_val) / size
|
||||
score += p * p
|
||||
# weight the group score by its relative size
|
||||
gini += (1.0 - score) * (size / n_instances)
|
||||
return gini
|
||||
|
||||
# Select the best split point for a dataset
|
||||
def get_split(dataset):
|
||||
class_values = list(set(row[-1] for row in dataset))
|
||||
b_index, b_value, b_score, b_groups = 999, 999, 999, None
|
||||
for index in range(len(dataset[0])-1):
|
||||
for row in dataset:
|
||||
groups = test_split(index, row[index], dataset)
|
||||
gini = gini_index(groups, class_values)
|
||||
if gini < b_score:
|
||||
b_index, b_value, b_score, b_groups = index, row[index], gini, groups
|
||||
return {'index':b_index, 'value':b_value, 'groups':b_groups}
|
||||
|
||||
# Create a terminal node value
|
||||
def to_terminal(group):
|
||||
outcomes = [row[-1] for row in group]
|
||||
return max(set(outcomes), key=outcomes.count)
|
||||
|
||||
# Create child splits for a node or make terminal
|
||||
def split(node, max_depth, min_size, depth):
|
||||
left, right = node['groups']
|
||||
del(node['groups'])
|
||||
# check for a no split
|
||||
if not left or not right:
|
||||
node['left'] = node['right'] = to_terminal(left + right)
|
||||
return
|
||||
# check for max depth
|
||||
if depth >= max_depth:
|
||||
node['left'], node['right'] = to_terminal(left), to_terminal(right)
|
||||
return
|
||||
# process left child
|
||||
if len(left) <= min_size:
|
||||
node['left'] = to_terminal(left)
|
||||
else:
|
||||
node['left'] = get_split(left)
|
||||
split(node['left'], max_depth, min_size, depth+1)
|
||||
# process right child
|
||||
if len(right) <= min_size:
|
||||
node['right'] = to_terminal(right)
|
||||
else:
|
||||
node['right'] = get_split(right)
|
||||
split(node['right'], max_depth, min_size, depth+1)
|
||||
|
||||
# Build a decision tree
|
||||
def build_tree(train, max_depth, min_size):
|
||||
root = get_split(train)
|
||||
split(root, max_depth, min_size, 1)
|
||||
return root
|
||||
|
||||
# Print a decision tree
|
||||
def print_tree(node, depth=0):
|
||||
if isinstance(node, dict):
|
||||
print('%s[X%d < %.3f]' % ((depth*' ', (node['index']+1), node['value'])))
|
||||
print_tree(node['left'], depth+1)
|
||||
print_tree(node['right'], depth+1)
|
||||
else:
|
||||
print('%s[%s]' % ((depth*' ', node)))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
dataset = pd.read_excel('Train.xlsx', sheet_name="Sheet1").to_numpy()
|
||||
tree = build_tree(dataset, 1, 1)
|
||||
print_tree(tree)
|
|
@ -0,0 +1,15 @@
|
|||
{
|
||||
// Use IntelliSense to learn about possible attributes.
|
||||
// Hover to view descriptions of existing attributes.
|
||||
// For more information, visit: https://go.microsoft.com/fwlink/?linkid=830387
|
||||
"version": "0.2.0",
|
||||
"configurations": [
|
||||
{
|
||||
"name": "Python: Current File",
|
||||
"type": "python",
|
||||
"request": "launch",
|
||||
"program": "${file}",
|
||||
"console": "integratedTerminal"
|
||||
}
|
||||
]
|
||||
}
|
|
@ -0,0 +1,3 @@
|
|||
{
|
||||
"python.pythonPath": "C:\\Users\\user\\AppData\\Local\\Programs\\Python\\Python38-32\\python.exe"
|
||||
}
|
Binary file not shown.
|
@ -0,0 +1,92 @@
|
|||
import pandas as pd
|
||||
def test_split(index, value, dataset):
|
||||
left, right = list(), list()
|
||||
for row in dataset:
|
||||
if row[index] < value:
|
||||
left.append(row)
|
||||
else:
|
||||
right.append(row)
|
||||
return left, right
|
||||
|
||||
# Calculate the Gini index for a split dataset
|
||||
def gini_index(groups, classes):
|
||||
# count all samples at split point
|
||||
n_instances = float(sum([len(group) for group in groups]))
|
||||
# sum weighted Gini index for each group
|
||||
gini = 0.0
|
||||
for group in groups:
|
||||
size = float(len(group))
|
||||
# avoid divide by zero
|
||||
if size == 0:
|
||||
continue
|
||||
score = 0.0
|
||||
# score the group based on the score for each class
|
||||
for class_val in classes:
|
||||
p = [row[-1] for row in group].count(class_val) / size
|
||||
score += p * p
|
||||
# weight the group score by its relative size
|
||||
gini += (1.0 - score) * (size / n_instances)
|
||||
return gini
|
||||
|
||||
# Select the best split point for a dataset
|
||||
def get_split(dataset):
|
||||
class_values = list(set(row[-1] for row in dataset))
|
||||
b_index, b_value, b_score, b_groups = 999, 999, 999, None
|
||||
for index in range(len(dataset[0])-1):
|
||||
for row in dataset:
|
||||
groups = test_split(index, row[index], dataset)
|
||||
gini = gini_index(groups, class_values)
|
||||
if gini < b_score:
|
||||
b_index, b_value, b_score, b_groups = index, row[index], gini, groups
|
||||
return {'index':b_index, 'value':b_value, 'groups':b_groups}
|
||||
|
||||
# Create a terminal node value
|
||||
def to_terminal(group):
|
||||
outcomes = [row[-1] for row in group]
|
||||
return max(set(outcomes), key=outcomes.count)
|
||||
|
||||
# Create child splits for a node or make terminal
|
||||
def split(node, max_depth, min_size, depth):
|
||||
left, right = node['groups']
|
||||
del(node['groups'])
|
||||
# check for a no split
|
||||
if not left or not right:
|
||||
node['left'] = node['right'] = to_terminal(left + right)
|
||||
return
|
||||
# check for max depth
|
||||
if depth >= max_depth:
|
||||
node['left'], node['right'] = to_terminal(left), to_terminal(right)
|
||||
return
|
||||
# process left child
|
||||
if len(left) <= min_size:
|
||||
node['left'] = to_terminal(left)
|
||||
else:
|
||||
node['left'] = get_split(left)
|
||||
split(node['left'], max_depth, min_size, depth+1)
|
||||
# process right child
|
||||
if len(right) <= min_size:
|
||||
node['right'] = to_terminal(right)
|
||||
else:
|
||||
node['right'] = get_split(right)
|
||||
split(node['right'], max_depth, min_size, depth+1)
|
||||
|
||||
# Build a decision tree
|
||||
def build_tree(train, max_depth, min_size):
|
||||
root = get_split(train)
|
||||
split(root, max_depth, min_size, 1)
|
||||
return root
|
||||
|
||||
# Print a decision tree
|
||||
def print_tree(node, depth=0):
|
||||
if isinstance(node, dict):
|
||||
print('%s[X%d < %.3f]' % ((depth*' ', (node['index']+1), node['value'])))
|
||||
print_tree(node['left'], depth+1)
|
||||
print_tree(node['right'], depth+1)
|
||||
else:
|
||||
print('%s[%s]' % ((depth*' ', node)))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
dataset = pd.read_excel('Train.xlsx', sheet_name="Sheet1").to_numpy()
|
||||
tree = build_tree(dataset, 1, 1)
|
||||
print_tree(tree)
|
Loading…
Reference in New Issue